DOI QR코드

DOI QR Code

Interactions between Human Endogenous Retrovirus (HERV) and Human Immunodeficiency Virus (HIV)

인간 내성 리트로 바이러스(HERV)와 인간 면역 결핍 바이러스(HIV)의 상관관계

  • Received : 2015.03.28
  • Accepted : 2015.04.13
  • Published : 2015.04.30

Abstract

Retroviruses genes have been inserted into the human genome for millions of years. These retroviruses are now inactive due to mutations such as deletions or nonsense mutations. After mutation, retroviruses eventually became fixed in the genome in their endogenous forms and existed as traces of ancient viruses. These retroviruses are called endogenous retroviruses (ERVs), with the human form known as human endogenous retrovirus. HERV cannot become a fully active virus, but a number of viral proteins or even virus particles are expressed under various conditions. Compared to endogenous retroviruses, some exogenous retroviruses are still infectious and can threaten human life. Among these, human immunodeficiency virus (HIV) is one of the most well-known and best-studied. Recent studies have shown some elements of HERV were activated by HIV infection and interact with HIV-derived proteins. In addition, many studies have attempted to use HERV as vaccination against HIV infection. This review will describe the regulation and interaction between HERV and HIV infection and mention the development of vaccines and therapeutic agents against HIV infection by using HERV elements.

Keywords

Exogenous;human endogenous retrovirus (HERV);human immunodeficiency virus (HIV)

References

  1. Boller, K., Janssen, O., Schuldes, H., Tonjes, R. R. and Kurth, R. 1997. Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J.Virol. 71, 4581-4588.
  2. An, D. S., Xie, Y. and Chen, I. S. 2001. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J. Virol. 75, 3488-3489. https://doi.org/10.1128/JVI.75.7.3488-3489.2001
  3. Bhardwaj, N., Maldarelli, F., Mellors, J. and Coffin, J. M. 2014. HIV-1 infection leads to increased transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo but not to increased virion production. J. Virol. 88, 11108-11120. https://doi.org/10.1128/JVI.01623-14
  4. Bhat, R. K., Rudnick, W., Antony, J. M., Maingat, F., Ellestad, K. K., Wheatley, B. M., Tonjes, R. R. and Power, C. 2014. Human endogenous retrovirus-K(II) envelope induction protects neurons during HIV/AIDS. PLoS One 9,e97984. https://doi.org/10.1371/journal.pone.0097984
  5. Blomberg, J., Benachenhou, F., Blikstad, V., Sperber, G. and Mayer, J. 2009. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 448, 115-123. https://doi.org/10.1016/j.gene.2009.06.007
  6. Brinzevich, D., Young, G. R., Sebra, R., Ayllon, J., Maio, S. M., Deikus, G., Chen, B. K., Fernandez-Sesma, A., Simon, V. and Mulder, L. C. 2014. HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes. J. Virol. 88, 6213-6223. https://doi.org/10.1128/JVI.00669-14
  7. Calattini, S., Betsem, E. B., Froment, A., Mauclere, P., Tortevoye, P., Schmitt, C., Njouom, R., Saib, A. and Gessain, A. 2007. Simian foamy virus transmission from apes to humans,rural Cameroon. Emerg. Infect. Dis. 13, 1314-1320. https://doi.org/10.3201/eid1309.061162
  8. Gifford, R. J., Katzourakis, A., Tristem, M., Pybus, O. G., Winters, M. and Shafer, R. W. 2008. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc. Natl. Acad. Sci. USA 105, 20362-20367. https://doi.org/10.1073/pnas.0807873105
  9. Contreras-Galindo, R., Almodovar-Camacho, S., Gonzalez-Ramirez, S., Lorenzo, E. and Yamamura, Y. 2007. Comparative longitudinal studies of HERV-K and HIV-1 RNA titersin HIV-1-infected patients receiving successful versus unsuccessful highly active antiretroviral therapy. AIDS Res.Hum. Retroviruses 23, 1083-1086. https://doi.org/10.1089/aid.2007.0054
  10. Contreras-Galindo, R., Gonzalez, M., Almodovar-Camacho, S., Gonzalez-Ramirez, S., Lorenzo, E. and Yamamura, Y. 2006. A new Real-Time-RT-PCR for quantitation of human endogenous retroviruses type K (HERV-K) RNA load in plasma samples: increased HERV-K RNA titers in HIV-1 patients with HAART non-suppressive regimens. J. Virol. Meth. 136, 51-57. https://doi.org/10.1016/j.jviromet.2006.03.029
  11. Contreras-Galindo, R., Lopez, P., Velez, R. and Yamamura, Y. 2007. HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. AIDS Res. Hum. Retroviruses 23, 116-122. https://doi.org/10.1089/aid.2006.0117
  12. Gilbert, C., Maxfield, D. G., Goodman, S. M. and Feschotte, C. 2009. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genetics 5, e1000425. https://doi.org/10.1371/journal.pgen.1000425
  13. Goedert, J. J., Sauter, M. E., Jacobson, L. P., Vessella, R. L., Hilgartner, M. W., Leitman, S. F., Fraser, M. C. and Mueller-Lantzsch, N. G. 1999. High prevalence of antibodies against HERV-K10 in patients with testicular cancer but not with AIDS. Cancer Epidemiol. Biomarkers Prev. 8, 293-296.
  14. Kurth, R. and Bannert, N. 2010. Beneficial and detrimental effects of human endogenous retroviruses. Int. J. Cancer 126, 306-314. https://doi.org/10.1002/ijc.24902
  15. Jones-Engel, L., May, C. C., Engel, G. A., Steinkraus, K. A., Schillaci, M. A., Fuentes, A., Rompis, A., Chalise, M. K., Aggimarangsee, N., Feeroz, M. M., Grant, R., Allan, J. S., Putra, A., Wandia, I. N., Watanabe, R., Kuller, L., Thongsawat, S., Chaiwarith, R., Kyes, R. C. and Linial, M. L. 2008. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg. Infect. Dis. 14, 1200-1208. https://doi.org/10.3201/eid1408.071430
  16. Jones, R. B., Garrison, K. E., Mujib, S., Mihajlovic, V., Aidarus, N., Hunter, D. V., Martin, E., John, V. M., Zhan, W., Faruk, N. F., Gyenes, G., Sheppard, N. C., Priumboom-Brees, I. M., Goodwin, D. A., Chen, L., Rieger, M., Muscat-King, S., Loudon, P. T., Stanley, C., Holditch, S. J., Wong, J. C., Clayton, K., Duan, E., Song, H., Xu, Y., SenGupta, D., Tandon, R., Sacha, J. B., Brockman, M. A., Benko, E., Kovacs, C., Nixon, D. F. and Ostrowski, M. A. 2012. HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. J. Clin. Invest. 122, 4473-4489. https://doi.org/10.1172/JCI64560
  17. Jones, R. B., John, V. M., Hunter, D. V., Martin, E., Mujib, S., Mihajlovic, V., Burgers, P. C., Luider, T. M., Gyenes, G., Sheppard, N. C., Sengupta, D., Tandon, R., Yue, F. Y., Benko, E., Kovacs, C., Nixon, D. F. and Ostrowski, M. A. 2012. Human endogenous retrovirus K (HML-2) Gag- and Env-specific T-cell responses are infrequently detected in HIV-1-infected subjects using standard peptide matrix-based screening. Clin. Vaccine Immunol. 19, 288-292. https://doi.org/10.1128/CVI.05583-11
  18. Lawoko, A., Johansson, B., Rabinayaran, D., Pipkorn, R. and Blomberg, J. 2000. Increased immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons. J. Med. Virol. 62, 435-444. https://doi.org/10.1002/1096-9071(200012)62:4<435::AID-JMV7>3.0.CO;2-R
  19. Lemaitre, C., Harper, F., Pierron, G., Heidmann, T. and Dewannieux, M. 2014. The HERV-K human endogenous retrovirus envelope protein antagonizes Tetherin antiviral activity. J. Virol. 88, 13626-13637. https://doi.org/10.1128/JVI.02234-14
  20. Michaud, H. A., SenGupta, D., de Mulder, M., Deeks, S. G., Martin, J. N., Kobie, J. J., Sacha, J. B. and Nixon, D. F. 2014. Cutting edge: An antibody recognizing ancestral endogenous virus glycoproteins mediates antibody-dependentcellular cytotoxicity on HIV-1-infected cells. J. Immunol. 193, 1544-1548. https://doi.org/10.4049/jimmunol.1302108
  21. Lower, R., Lower, J. and Kurth, R. 1996. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177-5184. https://doi.org/10.1073/pnas.93.11.5177
  22. McIntosh, E. M. and Haynes, R. H. 1996. HIV and human endogenous retroviruses: an hypothesis with therapeutic implications. Acta. Biochim. Pol. 43, 583-592.
  23. Michaud, H. A., de Mulder, M., SenGupta, D., Deeks, S. G., Martin, J. N., Pilcher, C. D., Hecht, F. M., Sacha, J. B. and Nixon, D. F. 2014. Trans-activation, post-transcriptional maturation, and induction of antibodies to HERV-K (HML-2) envelope transmembrane protein in HIV-1 infection. Retrovirology 11, 10 https://doi.org/10.1186/1742-4690-11-10
  24. Monde, K., Contreras-Galindo, R., Kaplan, M. H., Markovitz, D. M. and Ono, A. 2012. Human endogenous retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1. J. Virol. 86, 11194-11208. https://doi.org/10.1128/JVI.00301-12
  25. Ogata, T., Okui, N., Sakuma, R., Kobayashi, N. and Kitamura, Y. 1999. Integrase of human endogenous retrovirus K-10 supports the replication of replication-incompetent Int- human immunodeficiency virus type 1 mutant. Jpn. J. Infect. Dis. 52, 251-252.
  26. Ormsby, C. E., Sengupta, D., Tandon, R., Deeks, S. G., Martin, J. N., Jones, R. B., Ostrowski, M. A., Garrison, K. E., Vazquez-Perez, J. A., Reyes-Teran, G. and Nixon, D. F. 2012. Human endogenous retrovirus expression is inversely associated with chronic immune activation in HIV-1 infection. PLoS One. 7, e41021. https://doi.org/10.1371/journal.pone.0041021
  27. Switzer, W. M., Bhullar, V., Shanmugam, V., Cong, M. E., Parekh, B., Lerche, N. W., Yee, J. L., Ely, J. J., Boneva, R., Chapman, L. E., Folks, T. M. and Heneine, W. 2004. Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. J. Virol. 78, 2780- 2789. https://doi.org/10.1128/JVI.78.6.2780-2789.2004
  28. Padow, M., Lai, L., Fisher, R. J., Zhou, Y. C., Wu, X., Kappes, J. C. and Towler, E. M. 2000. Analysis of human immunodeficiency virus type 1 containing HERV-K protease. AIDS Res. Hum. Retroviruses 16, 1973-1980. https://doi.org/10.1089/088922200750054701
  29. Priet, S., Gros, N., Navarro, J. M., Boretto, J., Canard, B., Querat, G. and Sire, J. 2005. HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viralDNA and is essential to the HIV-1 life cycle. Mol. Cell 17, 479-490. https://doi.org/10.1016/j.molcel.2005.01.016
  30. Sacha, J. B., Kim, I. J., Chen, L., Ullah, J. H., Goodwin, D. A., Simmons, H. A., Schenkman, D. I., von Pelchrzim, F., Gifford, R. J., Nimityongskul, F. A., Newman, L. P., Wildeboer, S., Lappin, P. B., Hammond, D., Castrovinci, P., Piaskowski, S. M., Reed, J. S., Beheler, K. A., Tharmanathan, T., Zhang, N., Muscat-King, S., Rieger, M., Fernandes, C., Rumpel, K., Gardner, J. P., 2nd, Gebhard, D. H., Janies, J., Shoieb, A., Pierce, B. G., Trajkovic, D., Rakasz, E., Rong,S., McCluskie, M., Christy, C., Merson, J. R., Jones, R. B., Nixon, D. F., Ostrowski, M. A., Loudon, P. T., Pruimboom-Brees, I. M. and Sheppard, N. C. 2012. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. J. Immunol. 189, 1467-1479. https://doi.org/10.4049/jimmunol.1200079
  31. Toufaily, C., Landry, S., Leib-Mosch, C., Rassart, E. and Barbeau, B. 2011. Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3, 2146-2159. https://doi.org/10.3390/v3112146
  32. Yan, N., O’Day, E., Wheeler, L. A., Engelman, A. and Lieberman, J. 2011. HIV DNA is heavily uracilated, which protects it from autointegration. Proc. Natl. Acad. Sci. USA 108, 9244-9249. https://doi.org/10.1073/pnas.1102943108
  33. Towler, E. M., Gulnik, S. V., Bhat, T. N., Xie, D., Gustschina, E., Sumpter, T. R., Robertson, N., Jones, C., Sauter, M., Mueller-Lantzsch, N., Debouck, C. and Erickson, J. W. 1998. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease? Biochemistry 37, 17137-17144. https://doi.org/10.1021/bi9818927
  34. van der Kuyl, A. C. 2012. HIV infection and HERV expression: a review. Retrovirology 9, 6. https://doi.org/10.1186/1742-4690-9-6
  35. Vogetseder, W., Dumfahrt, A., Mayersbach, P., Schonitzer, D. and Dierich, M. P. 1993. Antibodies in human sera recognizing a recombinant outer membrane protein encoded by the envelope gene of the human endogenous retrovirus K. AIDS Res. Hum. Retroviruses 9, 687-694. https://doi.org/10.1089/aid.1993.9.687
  36. Yang, J., Bogerd, H. P., Peng, S., Wiegand, H., Truant, R. and Cullen, B. R. 1999. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc. Natl. Acad. Sci. USA 96, 13404-13408. https://doi.org/10.1073/pnas.96.23.13404