Efficacy of New 6-Phytase from Buttiauxella spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets

  • Kiarie, E. (DuPont Industrial Bioscience-Danisco Animal Nutrition) ;
  • Woyengo, T. (Department of Animal Science, University of Manitoba) ;
  • Nyachoti, C.M. (Department of Animal Science, University of Manitoba)
  • Received : 2015.01.23
  • Accepted : 2015.03.05
  • Published : 2015.10.01


A total of 420 day-old male Ross chicks were weighed at d 1 of life and assigned to test diets to assess the efficacy of a new Buttiauxella spp. phytase expressed in Trichoderma reesei. Diets were: positive control (PC) adequate in nutrients and negative control (NC) diet (40% and 17% less available phosphorous (P) and calcium (Ca), respectively) supplemented with 6 levels of phytase 0, 250, 500, 750, 1,000, and 2,000 phytase units (FTU)/kg of diet. All diets had titanium dioxide as digestibility marker and each diet was allocated to ten cages (6 birds/cage). Diets were fed for 3 wk to measure growth performance, apparent retention (AR) on d 17 to 21 and bone ash and ileal digestibility (AID) on d 22. Growth performance and nutrient utilization was lower (p<0.05) for NC vs PC birds. Phytase response in NC birds was linear (p<0.05) with 2,000 FTU showing the greatest improvement on body weight gain (20%), feed conversion (7.4%), tibia ash (18%), AR of Ca (38%), AR of P (51%) and apparent metabolizable energy corrected for nitrogen (5.1%) relative to NC. Furthermore, phytase at ${\geq}750FTU$ resulted in AID of total AA commensurate to that of PC fed birds and at ${\geq}1,000FTU$ improved (p<0.05) AR of P, dry matter, and N beyond that of the lower doses of phytase and PC diet. In conclusion, the result from this study showed that in addition to increased P and Ca utilization, the new Buttiauxella phytase enhanced growth performance and utilization of other nutrients in broiler chickens in a dose-dependent manner.


  1. Adedokun, S. A., A. Owusu-Asiedu, P. Plumstead, and O. Adeola. 2013. The efficacy of graded levels of a new 6-phytase from Buttiauxella spp. expressed in Trichoderma reesei on ileal amino acid digestibility in pigs fed a corn-soybean meal-wheat midds corn DDGs-based diet. J. Anim. Sci. 91(E-Suppl. 2):411.
  2. Adeola, O. and J. S. Sands. 2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 81:E78-85E.
  3. Adeola, O. and A. J. Cowieson. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 89:3189-3218.
  4. Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis. 14th ed. AOAC, Washington, DC, USA.
  5. Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed. AOAC, Washington, DC, USA.
  6. Association of Official Analytical Chemists (AOAC). 2005. Official Methods of Analysis of AOAC International. 18th ed. AOAC Int., Gaithersburg, MD, USA.
  7. Amerah, A. M., P. W. Plumstead, L. P. Barnard, and A. Kumar. 2014. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci. 93:906-915.
  8. Canadian Council on Animal Care. 2009. Guide to Care and Use of Experimental Animals. VI. Canadian Council on Animal Care. Ottawa, ON, Canada.
  9. Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45: 101-108.
  10. Cowieson, A. J. and O. Adeola. 2005. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult. Sci. 84:1860-1867.
  11. Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2006. Supplementation of corn-soy-based diets with an Escherichia coli-derived phytase: effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 85:1389-1397.
  12. Glynn, I. M. 1993. All hands to the sodium pump. J. Physiol. 462: 1-30.
  13. Greiner, R. and U. Konietzny. 2010. Phytases: Biochemistry, Enzymology and Characteristics Relevant to Animal Feed Use. In: Enzymes in Farm Animal Nutrition, 2nd ed., (Eds. M. R. Bedford and G. G. Partridge). CAB International, Wallingford, UK. pp. 96-128.
  14. Greiner, R., N.-G. Carlsson, and M. L. Alminger. 2000. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J. Biotechnol. 84:53-62.
  15. Kiarie E. and C. M. Nyachoti. 2009. Bioavailability of calcium and phosphorous in feedstuffs for farm animals. In: Phosphorous and Calcium Utilization and Requirements in Farm Animals (Eds. DMSS Vitti and E Kebreab). CAB International, Wallingford, UK. pp. 76-83.
  16. Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71-88.
  17. Latta, M. and M. A. Eskin. 1980. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 28:1313-1315.
  18. Lomer, M. C. E., R. P. H. Thompson, J. Commisso, C. L. Keen, and J. J. Powell. 2000. Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125:2339-2343.
  19. Martinez-Amezcua, C., C. M. Parsons, and D. H. Baker. 2006. Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poult. Sci. 85:470-475.
  20. Mills, P. A., R. G. Rotter, and R. R. Marquardt. 1989. Modification of the glucosamine method for the quantification of fungal contamination. Can J. Anim. Sci. 69:1105-1106.
  21. NRC. 1994. Nutrient Requirements of Poultry. 19th rev. ed. Natl. Acad. Press, Washington, DC, USA.
  22. Onyango, E. M., E. K. Asem, and O. Adeola. 2009. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens. Br. J. Nutr. 101:836-842.
  23. Ravindran, V., S. Cabahug, G. Ravindran, and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699-706.
  24. Ravindran, V. 2013. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 22:628-636.
  25. Ravindran, V., A. J. Cowieson, and P. H. Selle. 2008. Influence of dietary electrolyte balance and microbial phytase on growth performance, nutrient utilization, and excreta quality of broiler chickens. Poult. Sci. 87:677-688.
  26. Rutherfurd, S. M., T. K. Chung, and P. J. Moughan. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 43:598-606.
  27. Rutherfurd, S. M., T. K. Chung, P. C. H. Morel, and P. J. Moughan. 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 83:61-68.
  28. Rutherfurd, S. M., T. K. Chung, D. V. Thomas, M. L. Zou, and P. J. Moughan. 2012. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 91:1118-1127.
  29. Santos, F. R., M. Hruby, E. E. M. Pierson, J. C. Remus, and N. K. Sakomura. 2008. Effect of phytase supplementation in diets on nutrient digestibility and performance in broiler chicks. J. Appl. Poult. Res. 17:191-201.
  30. Selle, P. H., V. Ravindran, R. A. Caldwell, and W. L. Bryden. 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 13:255-278.
  31. Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 135:1-41.
  32. Selle, P. H., A. J. Cowieson, and V. Ravindran. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 124:126-141.
  33. Selle, P. H., A. J. Cowieson, N. P. Cowieson, and V. Ravindran. 2012. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutr. Res. Rev. 25:1-17.
  34. Tamim, N. M., R. Angel, and M. Christman. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 83:1358-1367.
  35. Um, J. S., H. S. Lim, S. H. Ahn, and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian Australas. J. Anim. Sci. 13:824-829.
  36. Vigors, S., T. Sweeney, C. J. O'Shea, J. A. Browne, and J. V. O'Doherty. 2014. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression. Br. J. Nutr. 112:688-697.
  37. Waldroup, P. W. 1999. Nutritional approaches to reducing phosphorus excretion by poultry. Poult. Sci. 78:683-691.
  38. Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.
  39. Woyengo T. A., A. J. Cowieson, O. Adeola, and C. M. Nyachoti. 2009. Ileal digestibility and endogenous flow of minerals and amino acids: responses to dietary phytic acid in piglets. Br. J. Nutr. 102:428-433
  40. Woyengo, T. A., E. Kiarie, and C. M. Nyachoti. 2010. Metabolizable energy and standardized ileal digestible amino acid contents of expeller-extracted canola meal fed to broiler chicks. Poult. Sci. 89:1182-1189.
  41. Woyengo, T. A., D. Weihrauch, and C. M. Nyachoti. 2012. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets. J. Anim. Sci. 90:543-549.
  42. Yu, S., A. J. Cowieson, C. Gilbert, P. Plumstead, and S. Dalsgaard. 2012. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 90:1824-1832.
  43. Yu, S., M. F. Kvidtgaard, M. F. Isaksen, and S. Dalsgaard. 2014. Characterization of a mutant Buttiauxella phytase using phytic Acid and phytic acid-protein complex as substrates. Anim. Sci. Lett. 1:18-32.
  44. Zhang X., D. A. Roland, G. R. McDaniel, and S. K. Rao. 1999. Effect of Natuphos phytase supplementation to feed on performance and ileal digestibility of protein and amino acids of broilers. Poult. Sci. 78:1567-1572.

Cited by

  1. Effect of a microbial phytase on growth performance, plasma parameters and apparent ileal amino acid digestibility in Youxian Sheldrake fed a low-phosphorus corn-soybean diet vol.30, pp.10, 2017,
  2. Effect of dietary calcium concentrations in low non-phytate phosphorus diets containing phytase on growth performance, bone mineralization, litter quality, and footpad dermatitis incidence in growing broiler chickens vol.30, pp.7, 2017,
  3. Effect of superdosing phytase on productive performance and egg quality in laying hens vol.30, pp.7, 2017,
  4. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein pp.1559-0291, 2018,
  5. Effect of immobilized fungal phytase on growth performance and bone traits of broilers fed with low dietary calcium and phosphorus vol.11, pp.6, 2018,