DOI QR코드

DOI QR Code

Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

  • Canaza-Cayo, Ali William ;
  • Lopes, Paulo Savio ;
  • da Silva, Marcos Vinicius Gualberto Barbosa ;
  • de Almeida Torres, Robledo ;
  • Martins, Marta Fonseca ;
  • Arbex, Wagner Antonio ;
  • Cobuci, Jaime Araujo
  • Received : 2014.08.15
  • Accepted : 2015.03.24
  • Published : 2015.10.01

Abstract

A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield ($PS_i$) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of $PS_7$ would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

Keywords

Genetic Trend;Genetic Parameters;Lactation Persistency;Legendre's Polynomials;Random Regression Model;Cattle

References

  1. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In: Proc. 2nd Int. Symp. Information Theory (Eds. B. N. Petrov and F. Csaki). Akademia Kiado, Budapest, Hungary. pp. 267-281.
  2. Biassus, I. O., J. A. Cobuci, C. N. Costa, P. R. N. Rorato, J. Braccini Neto, and L. L. Cardoso. 2010. Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models. Rev. Bras. Zootec. 39:2617-2624. https://doi.org/10.1590/S1516-35982010001200009
  3. Biassus, I. O., J. A. Cobuci, C. N. Costa, P. R. N. Rorato, J. Braccini Neto, and L. L. Cardoso. 2011. Genetic parameters for production traits in primiparous Holstein cows estimated by random regression models. Rev. Bras. Zootec. 40:85-94. https://doi.org/10.1590/S1516-35982011000100012
  4. Bignardi, A. B., L. El Faro, V. L. Cardoso, P. F. Machado, and L. G. Albuquerque. 2009. Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livest. Sci. 123:1-7. https://doi.org/10.1016/j.livsci.2008.09.021
  5. Bohmanova, J., F. Miglior, J. Jamrozik, I. Misztal, and P. G. Sullivan. 2008. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows. J. Dairy Sci. 91:3627-3638. https://doi.org/10.3168/jds.2007-0945
  6. Boligon, A. A., P. R. N. Rorato, G. B. B. Ferreira, T. Weber, C. J. Kippert, and J. Andreazza. 2005 Heritability and genetic trend for milk and fat yields in Holstein herds raised in the state of Rio Grande do Sul. Rev. Bras. Zootec. 34:1512-1518. https://doi.org/10.1590/S1516-35982005000500011
  7. Bozdogan, H. 2000. Akaike's information criterion and recent developments in information complexity. J. Math. Psychol. 44:62-91. https://doi.org/10.1006/jmps.1999.1277
  8. Chaves, L. C. S. 2009. Genetic evaluation of dairy buffaloes using random regression model. Ph.D Thesis, Universidade Federal de Vicosa, Vicosa, MG, Brazil.
  9. Costa, C. N., C. M. R. Melo, C. H. C. Machado, A. F. Freitas, I. U. Packer, and J. A. Cobuci. 2005. Estimation of genetic parameters for test day milk records of first lactation Gyr cows using repeatability and random regression animal models. Rev. Bras. Zootec. 34:1519-1530. https://doi.org/10.1590/S1516-35982005000500012
  10. Cobuci, J. A., R. F. Euclydes, C. N. Costa, P. S. Lopes, R. A. Torres, and C. S. Pereira. 2004. Analysis of persistency in the lactation of Holstein cows using test-day yield and random regression model. Rev. Bras. Zootec. 33:546-554. https://doi.org/10.1590/S1516-35982004000300004
  11. Cobuci, J. A., C. N. Costa, N. M. Teixeira, and A. F. Freitas. 2006. Use of Legendre polynomials and Wilmink function in genetic evaluations for persistency of lactation in Holstein cows. Arq. Bras. Med. Vet. Zootec. 58:614-623. https://doi.org/10.1590/S0102-09352006000400025
  12. Cobuci, J. A., R. F. Euclydes, C. N. Costa, R. A. Torres, P. S. Lopes, and A. S. Pereira. 2007. Genetic evaluation for persistency of lactation in Holstein cows using a random regression model. Genet. Mol. Biol. 30:349-355. https://doi.org/10.1590/S1415-47572007000300009
  13. Cobuci, J. A. and C. N. Costa. 2012. Persistency of lactation using random regression models and different fixed regression modeling approaches. Rev. Bras. Zootec. 41:1996-2004. https://doi.org/10.1590/S1516-35982012000900005
  14. De Roos, A. P. W., A. G. F. Harbers, and G. De Jong. 2004. Random herd curves in a test-day model for milk, fat, and protein production of Dairy Cattle in the Netherlands. J. Dairy Sci. 87:2693-2701. https://doi.org/10.3168/jds.S0022-0302(04)73396-2
  15. Dorneles, C. K. P., J. A. Cobuci, P. R. N. Rorato, T. Weber, J. S. Lopes, and H. N. Oliveira. 2009a. Estimation of genetic parameters for Holstein cows milk production by random regression. Arq. Bras. Med. Vet. Zootec. 61:407-412. https://doi.org/10.1590/S0102-09352009000200018
  16. Dorneles, C. K. P., P. R. N. Rorato, J. A. Cobuci, J. S. Lopes, T. Weber and H. N. Oliveira. 2009b. Lactation persistency for Holstein cows raised in the State of Rio Grande do Sul using a random regression. Cienc. Rural 39:1485-1491. https://doi.org/10.1590/S0103-84782009000500028
  17. Ferreira, W. J., N. M. Teixeira, R. A. Torres, and R. B. Barra. 2006.Estimate of genetic trend for milk production in Holstein in the State of Minas Gerais. Arq. Bras. Med. Vet. Zootec. 58:599-606. https://doi.org/10.1590/S0102-09352006000400023
  18. Freitas, L. S., M. A. Silva, R. S. Verneque, B. D. Valente, G. S. Correa, R. F. Ferreira, M. G. C. D. Peixoto, and G. G. Santos. 2010. Evaluation of lactation persistency of Guzerat cows using random regression models. Arq. Bras. Med. Vet. Zootec. 62:401-408. https://doi.org/10.1590/S0102-09352010000200021
  19. Jakobsen, J. H., P. Madsen, J. Jensen, J. Pedersen, L. G. Christensen, and D. A. Sorensen. 2002. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML J. Dairy Sci. 85:1607-1616. https://doi.org/10.3168/jds.S0022-0302(02)74231-8
  20. Jamrozik, J., L. R. Schaeffer, and J. C. M. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. J. Dairy Sci. 80:1217-1226. https://doi.org/10.3168/jds.S0022-0302(97)76050-8
  21. Khorshidie, R., A. A. Shadparvar, N. Ghavi Hossein-Zadeh, and S. Joezy Shakalgurabi. 2012. Genetic trends for 305-day milk yield and persistency in Iranian Holsteins. Livestock Science, 144:211-217. https://doi.org/10.1016/j.livsci.2011.11.016
  22. Kistemaker, G. J. 2003. Comparison of persistency definitions in random regression test day models. In: Proceedings of the Interbull Technical Workshop. 2003 March, 1-3; Beltsville, MD, USA. Interbull Bulletin 30:96-98.
  23. Lopez-Romero, P. and M. J. Carabano. 2003. Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest. Prod. Sci. 82:81-96. https://doi.org/10.1016/S0301-6226(03)00003-4
  24. Madsen, O. 1975. A comparison of some suggested measures of persistency of milk yield in dairy cows. Anim. Prod. 20:191-197. https://doi.org/10.1017/S0003356100035182
  25. Meyer, K. 2007. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B, 8:815-821. https://doi.org/10.1631/jzus.2007.B0815
  26. Pelicioni, L. C., L. G. Albuquerque, and A. S. Queiroz. 2009. Estimates of covariance components for body weights from birth to 365 days of age in Guzera cattle, using random regression models. Rev. Bras. Zootec. 38:50-60. https://doi.org/10.1590/S1516-35982009000100007
  27. Pereira, R. J., P. S. Lopes, R. S. Verneque, M. L. Santana Junior, M. R. Lagrotta, and R. A. Torres. 2010. Covariance functions for test-day milk yield in Gir cattle. Pesq. Agropec. Bras. 45:1303-1311. https://doi.org/10.1590/S0100-204X2010001100011
  28. Pereira, R. J., R. S. Verneque, P. S. Lopes, M. L. Santana Junior, M. R. Lagrotta, R. A. Torres, A. E. Vercesi Filho, and M. A. Machado. 2012. Milk yield persistency in Brazilian Gyr cattle based on a random regression model. Genet. Mol. Res. 11:1599-1609. https://doi.org/10.4238/2012.June.15.9
  29. Pool, M. H., L. L. G. Janss, and T. H. E. Meuwissen. 2000. Genetic parameters of legendre polynomials for first parity lactation curves. J. Dairy Sci. 83:2640-2649. https://doi.org/10.3168/jds.S0022-0302(00)75157-5
  30. Schwarz, G. 1978. Estimating the dimension of a model. Ann. Statist. 6:461-464. https://doi.org/10.1214/aos/1176344136

Cited by

  1. Genetic perspective of milk yield persistency in the first three lactations of Iranian buffaloes (Bubalus bubalis) vol.84, pp.04, 2017, https://doi.org/10.1017/S0022029917000498
  2. Evaluation of the simulated physiological oocyte maturation (SPOM) system on F1 Gyr × Holstein oocytes and embryos vol.59, pp.4, 2019, https://doi.org/10.1071/AN17895