DOI QR코드

DOI QR Code

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I (Russian-American Anti-Cancer Center, Institute of Biomedicine, Altai State University) ;
  • Legutki, J Bart (Center for Innovations in Medicine, Biodesign Institute, Arizona State University) ;
  • Stafford, Philip (Center for Innovations in Medicine, Biodesign Institute, Arizona State University) ;
  • Trebukhov, Andrey V (Russian-American Anti-Cancer Center, Institute of Biomedicine, Altai State University) ;
  • Johnston, Stephen A (Center for Innovations in Medicine, Biodesign Institute, Arizona State University) ;
  • Shoikhet, Yakov N (Department of Faculty Surgery, Altai State Medical University) ;
  • Lazarev, Alexander F (Altai territory branch of Russian Cancer Research Center)
  • Published : 2015.07.13

Abstract

Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

Keywords

Antibodies;autoantibodies;immunosignature;cancer;biomarkers;peptide microarray;diagnostics

References

  1. Anderson NL, Ptolemy AS, Rifai N (2013). The riddle of protein diagnostics: future bleak or bright? Clin Chem, 59, 194-7. https://doi.org/10.1373/clinchem.2012.184705
  2. Azuma K, Komatsu N, Hattori S, et al (2014). Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib. PLoS One, 9, 86667. https://doi.org/10.1371/journal.pone.0086667
  3. Borrebaeck CA, Wingren C (2009). Design of high-density antibody microarrays for disease proteomics: key technological issues. J Proteomics, 72, 928-5. https://doi.org/10.1016/j.jprot.2009.01.027
  4. Caron M, Choquet-Kastylevsky G, Joubert-Caron R (2007). Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics, 6, 1115-2. https://doi.org/10.1074/mcp.R600016-MCP200
  5. Casiano CA, Mediavilla-Varela M, and Tan EM (2006). Tumor-associated antigen arrays for the serological diagnosis of cancer. Mol Cell Proteomics, 5, 1745-9. https://doi.org/10.1074/mcp.R600010-MCP200
  6. Chapman CJ, Murray A, McElveen JE, et al (2008). Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax, 63, 228-3. https://doi.org/10.1136/thx.2007.083592
  7. Chapman C, Murray A, Chakrabarti J, et al (2007). Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol, 18, 868-3. https://doi.org/10.1093/annonc/mdm007
  8. Chen YT, Scanlan MJ, Sahin U, et al (1997). A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A, 94, 1914-8. https://doi.org/10.1073/pnas.94.5.1914
  9. Dai L, Li J, Ortega R, et al (2014). Preferential autoimmune response in prostate cancer to cyclin B1 in a panel of tumor-associated antigens. J Immunol Res, 2014, 827827.
  10. Farlow EC, Vercillo MS, Coon JS, et al (2010). A multi-analyte serum test for the detection of non-small cell lung cancer. Br J Cancer, 103, 1221-8. https://doi.org/10.1038/sj.bjc.6605865
  11. Fensterle, J., J. C. Becker, T. Potapenko, et al (2004). B-Raf specific antibody responses in melanoma patients. BMC Cancer, 4, 62. https://doi.org/10.1186/1471-2407-4-62
  12. Ferlay J, Soerjomataram I, Dikshit R, et al (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136, 359-6. https://doi.org/10.1002/ijc.29210
  13. Fernandez Madrid F (2005). Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis. Cancer Lett, 230, 187-8. https://doi.org/10.1016/j.canlet.2004.12.017
  14. Fushiki T, Fujisawa H, Eguchi S (2006). Identification of biomarkers from mass spectrometry data using a "common" peak approach. BMC Bioinformatics, 7, 358. https://doi.org/10.1186/1471-2105-7-358
  15. Fuzery AK, Levin J, Chan MM, Chan DW (2013). Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics, 10, 13. https://doi.org/10.1186/1559-0275-10-13
  16. Gnjatic S, Wheeler C, Ebner M, et al (2009). Seromic analysis of antibody responses in non-small cell lung cancer patients and healthy donors using conformational protein arrays. J Immunol Methods, 341, 50-8. https://doi.org/10.1016/j.jim.2008.10.016
  17. Grandjean M, Dieu M, Raes M, Feron O (2013). A new method combining sequential immunoaffinity depletion and differential in gel electrophoresis to identify autoantibodies as cancer biomarkers. J Immunol Methods, 396, 23-2. https://doi.org/10.1016/j.jim.2013.07.006
  18. Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, and Caron M (2007). Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci, 1107, 223-0. https://doi.org/10.1196/annals.1381.024
  19. Heo CK, Bahk YY, Cho EW (2012). Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep, 45, 677-5. https://doi.org/10.5483/BMBRep.2012.45.12.236
  20. Hori SS, Gambhir SS (2011). Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med, 3, 109-6
  21. Hughes AK, Cichacz Z., Scheck A, et al (2012). Immunosignaturing can detect products from molecular markers in brain cancer. PLoS One, 7, 40201. https://doi.org/10.1371/journal.pone.0040201
  22. Kellner R, Lichtenfels R, Atkins D, et al (2002). Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics, 2, 1743-1. https://doi.org/10.1002/1615-9861(200212)2:12<1743::AID-PROT1743>3.0.CO;2-U
  23. Klade CS, Voss T, Krystek E, et al (2001). Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics, 1, 890-8. https://doi.org/10.1002/1615-9861(200107)1:7<890::AID-PROT890>3.0.CO;2-Z
  24. Koziol JA, Zhang JY, Casiano CA, et al (2003). Recursive partitioning as an approach to selection of immune markers for tumor diagnosis. Clin Cancer Res, 9, 5120-6.
  25. Kroening K., Johnston SA, Legutki JB (2012). Autoreactive antibodies raised by self derived de novo peptides can identify unrelated antigens on protein microarrays. Are autoantibodies really autoantibodies? Exp Mol Pathol, 92, 304-1. https://doi.org/10.1016/j.yexmp.2012.03.002
  26. Kukreja M, Johnston SA, Stafford P (2012). Comparative study of classification algorithms for immunosignaturing data. BMC Bioinformatics, 13, 139. https://doi.org/10.1186/1471-2105-13-139
  27. Kulasingam V, Diamandis EP (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol, 5, 588-9. https://doi.org/10.1038/ncponc1187
  28. Legutki JB, Magee DM, Stafford P, and Johnston SA (2010). A general method for characterization of humoral immunity induced by a vaccine or infection. Vaccine, 28, 4529-7. https://doi.org/10.1016/j.vaccine.2010.04.061
  29. Legutki JB, Zhao ZG, Greving M, et al (2014). Scalable high-density peptide arrays for comprehensive health monitoring. Nat Commun, 5, 4785. https://doi.org/10.1038/ncomms5785
  30. MacBeath G, Schreiber SL (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760-3.
  31. Matsutani T, Hiwasa T, Takiguchi M, et al (2012). Autologous antibody to src-homology 3-domain GRB2-like 1 specifically increases in the sera of patients with low-grade gliomas. J Exp Clin Cancer Res, 31, 85. https://doi.org/10.1186/1756-9966-31-85
  32. O'Rourke D J, DiJohnson DA, Caiazzo RJ, et al (2012). Autoantibody signatures as biomarkers to distinguish prostate cancer from benign prostatic hyperplasia in patients with increased serum prostate specific antigen. Clin Chim Acta, 413, 561-7. https://doi.org/10.1016/j.cca.2011.11.027
  33. Parkin DM, Bray F, Ferlay J, Pisani P (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer, 94, 153-6. https://doi.org/10.1002/ijc.1440
  34. Pulford, K, Falini B, Banham AH, et al (2000). Immune response to the ALK oncogenic tyrosine kinase in patients with anaplastic large-cell lymphoma. Blood, 96, 1605-7.
  35. Qin JJ, Wang XR, Wang P, et al (2014). Mini-array of multiple tumor-associated antigens (TAAs) in the immunodiagnosis of esophageal cancer. Asian Pac J Cancer Prev, 15, 2635-0. https://doi.org/10.7314/APJCP.2014.15.6.2635
  36. Restrepo L, Stafford P, Johnston SA (2013). Feasibility of an early Alzheimer's disease immunosignature diagnostic test. J Neuroimmunol, 254, 154-0. https://doi.org/10.1016/j.jneuroim.2012.09.014
  37. Sawyers CL (2008). The cancer biomarker problem. Nature, 452, 548-2. https://doi.org/10.1038/nature06913
  38. Scanlan MJ, Gordan JD, Williamson B, et al (1999). Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer, 83, 456-4. https://doi.org/10.1002/(SICI)1097-0215(19991112)83:4<456::AID-IJC4>3.0.CO;2-5
  39. Shi XZ, Jin X, Xu P, Shen HM (2014). Relationship between breast cancer and levels of serum thyroid hormones and antibodies: a meta-analysis. Asian Pac J Cancer Prev, 15, 6643-7. https://doi.org/10.7314/APJCP.2014.15.16.6643
  40. Stafford P, Cichacz Z, Woodbury NW, Johnston SA (2014). Immunosignature system for diagnosis of cancer. Proc Natl Acad Sci U S A, 111, 3072-0. https://doi.org/10.1073/pnas.1409432111
  41. Stafford P, Halperin R, Legutki JB, et al (2012). Physical characterization of the "immunosignaturing effect. Mol Cell Proteomics, 11, 111.
  42. Sykes KF, Legutki JB, Stafford P (2013). Immunosignaturing: a critical review. Trends Biotechnol, 31, 45-1. https://doi.org/10.1016/j.tibtech.2012.10.012
  43. Tan HT, Low J, Lim SG, Chung MC (2009). Serum autoantibodies as biomarkers for early cancer detection. FEBS J, 276, 6880-4. https://doi.org/10.1111/j.1742-4658.2009.07396.x
  44. Wang X, Yu J, Sreekumar A, et al (2005). Autoantibody signatures in prostate cancer. N Engl J Med, 353, 1224-5. https://doi.org/10.1056/NEJMoa051931
  45. Wang YQ, Zhang HH, Liu CL, et al (2012). Correlation between auto-antibodies to survivin and MUC1 variable number tandem repeats in colorectal cancer. Asian Pac J Cancer Prev, 13, 5557-2. https://doi.org/10.7314/APJCP.2012.13.11.5557
  46. Wu X, Molinaro C, Johnson N, Casiano CA (2001). Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthritis Rheum, 44, 2642-2. https://doi.org/10.1002/1529-0131(200111)44:11<2642::AID-ART444>3.0.CO;2-8
  47. Zhang JY, Casiano CA, Peng XX, et al (2003). Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev, 12, 136-3.
  48. Zhong L, Peng X, Hidalgo GE, et al (2004). Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. Proteomics, 4, 1216-5. https://doi.org/10.1002/pmic.200200679

Cited by

  1. Humoral Immunity Profiling of Subjects with Myalgic Encephalomyelitis Using a Random Peptide Microarray Differentiates Cases from Controls with High Specificity and Sensitivity pp.1559-1182, 2016, https://doi.org/10.1007/s12035-016-0334-0