DOI QR코드

DOI QR Code

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film

소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계

  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2015.05.30
  • Accepted : 2015.06.19
  • Published : 2015.07.01

Abstract

In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

Acknowledgement

Supported by : 인하공업전문대학

References

  1. R. Gangopadhyay and A. De, Chem. Mater., 12, 608 (2000). [DOI: http://dx.doi.org/10.1021/cm990537f] https://doi.org/10.1021/cm990537f
  2. S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya, Ind. Crop. Prod., 35, 92 (2012). [DOI: http://dx.doi.org/10.1016/j.indcrop.2011.06.025] https://doi.org/10.1016/j.indcrop.2011.06.025
  3. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nano Nett., 11, 666 (2011). [DOI: http://dx.doi.org/10.1021/nl1037962]
  4. P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. K. shi, M. Hall, E. Mast, C. bonham, W. Bennett, and M. B. Sullivan, Displays, 22, 65 (2001). [DOI: http://dx.doi.org/10.1016/S0141-9382(00)00064-0] https://doi.org/10.1016/S0141-9382(00)00064-0
  5. J. Huang, G. Li, and Y. Yang, Adv. Mater., 20, 415 (2008). [DOI: http://dx.doi.org/10.1002/adma.200701101] https://doi.org/10.1002/adma.200701101
  6. L. Basiricò, P. Cosseddu, B. Fraboni, and A. Bonfiglio, Thin Solid Films, 520, 1291 (2011). [DOI: http://dx.doi.org/10.1016/j.tsf.2011.04.188] https://doi.org/10.1016/j.tsf.2011.04.188
  7. S. J. Kim, J. M. Song, and J. S. Lee, J. Mater. Chem., 21, 14516 (2011). [DOI: http://dx.doi.org/10.1039/c1jm11812a] https://doi.org/10.1039/c1jm11812a
  8. Special Issue on Nanostructured Materials. Chem. Mater., 8, 1569 (1996). [DOI: http://dx.doi.org/10.1021/cm960902s] https://doi.org/10.1021/cm960902s
  9. H. L. Tasi, J. L. Schindler, C. R. Kannewurf, and M. G. Kanatzidis, Chem. Mater., 9, 875 (1997). [DOI: http://dx.doi.org/10.1021/cm960516a] https://doi.org/10.1021/cm960516a
  10. J. Chen, R. Ramasubramaniam, C. Xue, and H. Liu, Adv. Funct. Mater., 16, 114 (2006). [DOI: http://dx.doi.org/10.1002/adfm.200500590] https://doi.org/10.1002/adfm.200500590
  11. C. wei, D. Srivastava, and K. Cho, Nano Lett., 2, 647 (2002). https://doi.org/10.1021/nl025554+
  12. Z. Zhao, W. Zheng, W. Yu, and B. Long, Carbon, 47, 2112 (2009). [DOI: http://dx.doi.org/10.1016/j.carbon.2009.02.027] https://doi.org/10.1016/j.carbon.2009.02.027
  13. Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei. Adv. Mater., 19, 852. (2007). [DOI: http://dx.doi.org/10.1002/adma.200600703] https://doi.org/10.1002/adma.200600703
  14. C. Luo, X. Zuo, L. Wang, E. Wang, S. Song, J. Wang, J. Wang, C. Fan, and Y. Cao, Nano Lett., 8, 4454 (2008). [DOI: http://dx.doi.org/10.1021/nl802411d] https://doi.org/10.1021/nl802411d
  15. J. W. Han, B. Kim, J. Li, and M. Meyyappan, Appl. Phys. Lett., 102, 051903 (2013). [DOI: http://dx.doi.org/10.1063/1.4790437] https://doi.org/10.1063/1.4790437
  16. A. J. Lovinger, Science, 220, 1115 (1983). [DOI: http://dx.doi.org/10.1126/science.220.4602.1115] https://doi.org/10.1126/science.220.4602.1115
  17. J. H. Lee, U. Paik, J. Y. Choi, K. K. Kim, S. M. Yoon, J. Lee, B. K. Kim, J. M. Kim, M. H. Park, C. W. Yang, K. H. An, and Y. H. Lee, J. Phys. Chem. C, 111, 2477 (2007). [DOI: http://dx.doi.org/10.1021/jp0670485] https://doi.org/10.1021/jp0670485
  18. J. Lee, M. Kim, C. K. Hong and S. E. Shim, Meas. Sci. Technol., 18, 3707 (2007). [DOI: http://dx.doi.org/10.1088/0957-0233/18/12/005] https://doi.org/10.1088/0957-0233/18/12/005
  19. H. Pan, J. Li, Y. P. Feng, Nanoscale Res. Lett., 5, 654 (2010). [DOI: http://dx.doi.org/10.1007/s11671-009-9508-2] https://doi.org/10.1007/s11671-009-9508-2
  20. E. E. Shafee, M. E. Gamal, and M. Isa, J. Polym. Res., 19, 9805 (2012). [DOI: http://dx.doi.org/10.1007/s10965-011-9805-1] https://doi.org/10.1007/s10965-011-9805-1
  21. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, Carbon, 60, 146 (2013). [DOI: http://dx.doi.org/10.1016/j.carbon.2013.04.008] https://doi.org/10.1016/j.carbon.2013.04.008
  22. B. You, L. Wang, L. Yao and J. Yang, Chem. Comm., 49, 5016 (2013). [DOI: http://dx.doi.org/10.1039/c3cc41949e] https://doi.org/10.1039/c3cc41949e