Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film

소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계

  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2015.05.30
  • Accepted : 2015.06.19
  • Published : 2015.07.01


In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.


Supported by : 인하공업전문대학


  1. R. Gangopadhyay and A. De, Chem. Mater., 12, 608 (2000). [DOI:]
  2. S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya, Ind. Crop. Prod., 35, 92 (2012). [DOI:]
  3. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nano Nett., 11, 666 (2011). [DOI:]
  4. P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. K. shi, M. Hall, E. Mast, C. bonham, W. Bennett, and M. B. Sullivan, Displays, 22, 65 (2001). [DOI:]
  5. J. Huang, G. Li, and Y. Yang, Adv. Mater., 20, 415 (2008). [DOI:]
  6. L. Basiricò, P. Cosseddu, B. Fraboni, and A. Bonfiglio, Thin Solid Films, 520, 1291 (2011). [DOI:]
  7. S. J. Kim, J. M. Song, and J. S. Lee, J. Mater. Chem., 21, 14516 (2011). [DOI:]
  8. Special Issue on Nanostructured Materials. Chem. Mater., 8, 1569 (1996). [DOI:]
  9. H. L. Tasi, J. L. Schindler, C. R. Kannewurf, and M. G. Kanatzidis, Chem. Mater., 9, 875 (1997). [DOI:]
  10. J. Chen, R. Ramasubramaniam, C. Xue, and H. Liu, Adv. Funct. Mater., 16, 114 (2006). [DOI:]
  11. C. wei, D. Srivastava, and K. Cho, Nano Lett., 2, 647 (2002).
  12. Z. Zhao, W. Zheng, W. Yu, and B. Long, Carbon, 47, 2112 (2009). [DOI:]
  13. Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei. Adv. Mater., 19, 852. (2007). [DOI:]
  14. C. Luo, X. Zuo, L. Wang, E. Wang, S. Song, J. Wang, J. Wang, C. Fan, and Y. Cao, Nano Lett., 8, 4454 (2008). [DOI:]
  15. J. W. Han, B. Kim, J. Li, and M. Meyyappan, Appl. Phys. Lett., 102, 051903 (2013). [DOI:]
  16. A. J. Lovinger, Science, 220, 1115 (1983). [DOI:]
  17. J. H. Lee, U. Paik, J. Y. Choi, K. K. Kim, S. M. Yoon, J. Lee, B. K. Kim, J. M. Kim, M. H. Park, C. W. Yang, K. H. An, and Y. H. Lee, J. Phys. Chem. C, 111, 2477 (2007). [DOI:]
  18. J. Lee, M. Kim, C. K. Hong and S. E. Shim, Meas. Sci. Technol., 18, 3707 (2007). [DOI:]
  19. H. Pan, J. Li, Y. P. Feng, Nanoscale Res. Lett., 5, 654 (2010). [DOI:]
  20. E. E. Shafee, M. E. Gamal, and M. Isa, J. Polym. Res., 19, 9805 (2012). [DOI:]
  21. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, Carbon, 60, 146 (2013). [DOI:]
  22. B. You, L. Wang, L. Yao and J. Yang, Chem. Comm., 49, 5016 (2013). [DOI:]