DOI QR코드

DOI QR Code

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator

대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발

  • Han, Sang-Chul (Future Technology Research Laboratory, Korea Electric Power Research Institute) ;
  • Park, Byung-Jun (Future Technology Research Laboratory, Korea Electric Power Research Institute) ;
  • Jung, Se-Yong (Future Technology Research Laboratory, Korea Electric Power Research Institute) ;
  • Han, Young-Hee (Future Technology Research Laboratory, Korea Electric Power Research Institute) ;
  • Lee, Jong-Won (Department of Advanced Materials Engineering, Hanbat National University)
  • 한상철 (한전 전력연구원 미래기술연구소) ;
  • 박병준 (한전 전력연구원 미래기술연구소) ;
  • 정세용 (한전 전력연구원 미래기술연구소) ;
  • 한영희 (한전 전력연구원 미래기술연구소) ;
  • 이종원 (한밭대학교 신소재공학과)
  • Received : 2015.06.20
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Acknowledgement

Supported by : 한국전력공사, 한국에너지기술평가원

References

  1. R. L. Meng, L. Gao, P. Gautier-Picard, D. Ramirez, Y. Y. Sun, and C. W. Chu, Physica C, 232, 337 (1994). [DOI: http://dx.doi.org/10.1016/0921-4534(94)90792-7] https://doi.org/10.1016/0921-4534(94)90792-7
  2. H. Fang and K. Ravi-Chandar, Physica C, 340, 261 (2000). [DOI: http://dx.doi.org/10.1016/S0921-4534(00)01328-9] https://doi.org/10.1016/S0921-4534(00)01328-9
  3. S. C. Han, N. H. Jeong, Y. H. Han, and T. H. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 550 (2007).
  4. M. Kimura, M. Tanaka, and H. Horiuchi, Physica C, 174, 263 (1991). [DOI: http://dx.doi.org/10.1016/0921-4534(91)91556-J] https://doi.org/10.1016/0921-4534(91)91556-J
  5. Z. Lian, Z. Ping Xiang, J. Ping, W. Keguang, W. Jingrong, and W. Xiaozu, Supercond. Sci. Technol., 3, 490 (1990). [DOI: http://dx.doi.org/10.1088/0953-2048/3/10/002] https://doi.org/10.1088/0953-2048/3/10/002
  6. V. Pavate, L. B. Williams, and P. J. McGinn, J. Electron. Mater., 23, 1131 (1994). [DOI: http://dx.doi.org/10.1007/BF02649959] https://doi.org/10.1007/BF02649959
  7. C. Varanasi, S. Sengupta, P. J. McGinn, and D. Shi, Appl. Supercond., 2, 117 (1994). [DOI: http://dx.doi.org/10.1016/0964-1807(94)90028-0] https://doi.org/10.1016/0964-1807(94)90028-0