DOI QR코드

DOI QR Code

Sintering and Microwave Dielectric Properties of Zn2-2xSi1+xO4 Ceramics

Zn2-2xSi1+xO4 세라믹스의 소결 및 마이크로파 유전 특성

  • Yoon, Sang-Ok (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University) ;
  • Kim, Yun-Han (Department of Materials Engineering, Graduate School, Gangneung-Wonju National University) ;
  • Kim, So-Jung (Department of Electrical and Electronic Engineering, Hanzhong University) ;
  • Jo, So-Ra (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Shin (Hasla Co., Ltd.)
  • 윤상옥 (강릉원주대학교 대학원 재료공학과) ;
  • 김윤한 (강릉원주대학교 대학원 재료공학과) ;
  • 김소정 (한중대학교 전기전자공학과) ;
  • 조소라 (강릉원주대학교 세라믹신소재공학과) ;
  • 김신 ((주)하슬라)
  • Received : 2015.05.29
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

Sintering and microwave dielectric properties of $Zn_{2-2x}Si_{1+x}O_4$ (x=0~0.10) ceramics were investigated. The secondary phase of ZnO was observed in the specimen for x=0 whereas $SiO_2$ was detected in that for x=0.05. The composition of $Zn_2SiO_4$ might be close to x=0.02, i.e., $Zn_{1.96}Si_{1.02}O_4$; the ratio of Zn/Si is 1.922. The insufficient grain growth was observed in the specimen of x=0. For the specimens of $x{\geq}0.05$, the grain growth sufficiently occurred through the liquid phase sintering. The value of quality factor of all specimens was dependent on the x value, i.e., the ratio of Zn/Si, whereas that of dielectric constant was independent. Relative density, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.05, i.e., $Zn_{1.9}Si_{1.05}O_4$, sintered at $1,400^{\circ}C$ were 96.5%, 6.43, and 115,166 GHz, respectively.

References

  1. I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006).
  2. H. Ohsato, J. Ceram. Soc. Jpn., 113, 703 (2005). [DOI: http://dx.doi.org/10.2109/jcersj.113.703] https://doi.org/10.2109/jcersj.113.703
  3. S. B. Narang and S. Bahel, J. Ceram. Process. Res., 11, 316 (2010).
  4. Y. Guo, H. Ohsato, and K. I. Kakimoto, J. Eur. Ceram. Soc., 26, 1827 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.09.008] https://doi.org/10.1016/j.jeurceramsoc.2005.09.008
  5. M. Dong, Z. Yue, H. Zhuang, S. Meng, and L. Li, J. Am. Ceram. Soc., 91, 3981 (2008). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02814.x] https://doi.org/10.1111/j.1551-2916.2008.02814.x
  6. M. A. Eidem, B. R. Orton, and A. Whitaker, J. Mater. Sci., 22, 4139 (1987). [DOI: http://dx.doi.org/10.1007/BF01133370] https://doi.org/10.1007/BF01133370
  7. N. Tanaka, T. Iseki, L. Ling, R. Shimpo, and O. Ogawa, Shigen-to-Sozai, 114, 567 (1998). [DOI: http://dx.doi.org/10.2473/shigentosozai.114.567] https://doi.org/10.2473/shigentosozai.114.567
  8. N. H. Nguyen, J. B. Lim, S. Nahm, J. H. Paik, and J. H. Kim, J. Am. Ceram. Soc., 90, 3127 (2007). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2007.01891.x] https://doi.org/10.1111/j.1551-2916.2007.01891.x
  9. Phase Diagrams for Ceramists, Figure number 302, the ZnO-$SiO_2$ System, The American Ceramic Society, Inc. (1964).
  10. R. Hansson, B. Zhao, P. C. Hayes, and E. Jak, Metall. Mater. Trans. B, 36B, 187 (2005). [DOI: http://dx.doi.org/10.1007/s11663-005-0019-y] https://doi.org/10.1007/s11663-005-0019-y
  11. J. Xue, S. Wu, and J. Li, J. Am. Ceram. Soc., 96, 2481 (2013). [DOI: http://dx.doi.org/10.1111/jace.12331] https://doi.org/10.1111/jace.12331
  12. J. L. Zou, Q. L. Zhang, H. Yang, and H. P. Sun, Jpn. J. Appl. Phys., 45, 4143 (2006). [DOI: http://dx.doi.org/10.1143/JJAP.45.4143] https://doi.org/10.1143/JJAP.45.4143

Cited by

  1. MICROSTRUCTURE, PHASE EVOLUTION, AND MICROWAVE DIELECTRIC PROPERTIES OF Li₂O AND Ga₂O ₃ DOPED ZINC ORTHOSILICATE 2017, https://doi.org/10.13168/cs.2017.0018