DOI QR코드

DOI QR Code

Thermal and Dielectric Properties of LiF-Doped MgO Ceramics

LiF첨가 MgO 세라믹스의 열적·유전적 특성

  • Kim, Shin (Hasla Co., Ltd.) ;
  • Kim, So-Jung (Department of Electrical and Electronic Engineering, Hanzhong University) ;
  • Nam, Kyung-Jin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Cha, Hansol (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • 김신 ((주)하슬라) ;
  • 김소정 (한중대학교 전기전자공학과) ;
  • 남경진 (강릉원주대학교 세라믹신소재공학과) ;
  • 차한솔 (강릉원주대학교 세라믹신소재공학과) ;
  • 윤상옥 (강릉원주대학교 세라믹신소재공학과)
  • Received : 2015.05.29
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

Sintering, microstructure, thermal conductivity and microwave dielectric properties of xLiF-(1-x)MgO ceramics (x=0.03~0.10 mol) were investigated. The high density was obtained in the specimens of $x{\geq}0.06$, i.e., 0.04 LiF-0.96 MgO in mol, whereas the amount of 0.03 mol LiF was insufficient to densify. From the result that the contact flattening in the sintered specimen was observed, the densification occurred through the liquid-phase sintering. The specimen of x=0.06 showed the highest room-temperature thermal conductivity. Relative density, thermal conductivity, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.06 sintered at $900^{\circ}C$ for 4 h were 97.8%, $39.2Wm^{-1}K^{-1}$, 9.45, and 14,671 GHz, respectively.

References

  1. S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, Prog. Solid State Ch., 41, 20 (2013). [DOI: http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002] https://doi.org/10.1016/j.progsolidstchem.2012.12.002
  2. R. Riedel and I. W. Chen, Ceramic Science and Technology, Materials and Properties, 2 (WILEY-VCH, Weinheim, 2010) p. 14.
  3. A. J. Slifka, B. J. Filla, and J. M. Phelps, J. Res. Inst. Stand. Technol., 103, 357 (1998). [DOI: http://dx.doi.org/10.6028/jres.103.021] https://doi.org/10.6028/jres.103.021
  4. C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering (Spring, New York, 2007) p. 647.
  5. K. Itatani, T. Tsujimoto, and A. Kishimoto, J. Eur. Ceram. Soc., 26, 639 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.011] https://doi.org/10.1016/j.jeurceramsoc.2005.06.011
  6. R. W. Rice, Am. Ceram. Soc. Bull., 41, 271 (1962).
  7. P. E. Hart and J. A. Pask, J. Am. Ceram. Soc., 54, 315 (1971). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1971.tb12299.x] https://doi.org/10.1111/j.1151-2916.1971.tb12299.x
  8. A. Kan, T. Moriyama, S. Takahashi, and H. Ogawa, Jpn. J. Appl. Phys., 50, 09NF02 (2011). [DOI: http://dx.doi.org/10.1143/JJAP.50.09NF02] https://doi.org/10.7567/JJAP.50.09NF02
  9. R. M. German, Liquid Phase Sintering (Plenum Press, New York, 1985) p. 101. [DOI: http://dx.doi.org/10.1007/978-1-4899-3599-1_5]
  10. R. M. German, P. Suri, and S. J. Park, J. Mater. Sci., 44, 1 (2009). [DOI: http://dx.doi.org/10.1007/s10853-008-3008-0] https://doi.org/10.1007/s10853-008-3008-0
  11. G. A. Slack, J. Phys. Chem. Solid., 34, 321 (1973). [DOI: http://dx.doi.org/10.1016/0022-3697(73)90092-9] https://doi.org/10.1016/0022-3697(73)90092-9
  12. A. Kan, H. Ogawa, and T. Moriyama, J. Mater. Res., 27, 915 (2012). [DOI: http://dx.doi.org/10.1557/jmr.2012.314]