DOI QR코드

DOI QR Code

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique

원자층 증착 기술을 이용한 TiO2 활성층 기반 TFT 연구

  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • Received : 2015.06.02
  • Accepted : 2015.06.24
  • Published : 2015.07.01

Abstract

In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.

Acknowledgement

Supported by : 충북대학교

References

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: http://dx.doi.org/10.1126/science.1083212] https://doi.org/10.1126/science.1083212
  2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090] https://doi.org/10.1038/nature03090
  3. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.85.1012] https://doi.org/10.1103/PhysRevLett.85.1012
  4. J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: http://dx.doi.org/10.1063/1.2969780] https://doi.org/10.1063/1.2969780
  5. W. B Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: http://dx.doi.org/10.1063/1.2120895] https://doi.org/10.1063/1.2120895
  6. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: http://dx.doi.org/10.1021/ja068876e] https://doi.org/10.1021/ja068876e
  7. Y. S. Rim, H. S. Lim, and H. J. Kim, Appl. Mater. Interfaces, 5, 3565 (2013). [DOI: http://dx.doi.org/10.1021/am302722h] https://doi.org/10.1021/am302722h
  8. M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, Appl. Phys., 89, 242103 (2006).
  9. C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: http://dx.doi.org/10.1149/1.2800562] https://doi.org/10.1149/1.2800562
  10. P. C. Yao, J. L. Chiang, and M. C. Lee, Solid State Sciences, 28, 47 (2014). [DOI: http://dx.doi.org/10.1016/j.solidstatesciences.2013.12.011] https://doi.org/10.1016/j.solidstatesciences.2013.12.011
  11. C. Y. Koo, K.K.K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, Electrochem. Solid-State Lett., 157, J111 (2010).
  12. P. H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett., 96, 082116 (2010). [DOI: http://dx.doi.org/10.1063/1.3330944] https://doi.org/10.1063/1.3330944
  13. Q. Xie, Y. L. Jiang, C. Detavernier, D. Deduytsche, and R.L.V. Meirhaeghe, J. Appl. Phys., 102, 083521 (2007). [DOI: http://dx.doi.org/10.1063/1.2798384] https://doi.org/10.1063/1.2798384
  14. J. Y. Kim, Y. J. Choi, H. H. Park, S. Golledge, and D. C. Johnson, JVST A, 28, 1111 (2010).
  15. C. F. Zhu, W. K. Fong, B. H. Leung, C. C. Cheng, and S. Charles, IEEE Electron Device, 48, 1225 (2001). [DOI: http://dx.doi.org/10.1109/16.925252] https://doi.org/10.1109/16.925252
  16. Z. Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, Phys. Rev. Lett., 89, 285505 (2002). [DOI: http://dx.doi.org/10.1103/PhysRevLett.89.285505] https://doi.org/10.1103/PhysRevLett.89.285505
  17. H. S. Witham and P. M. Lenahan, Appl. Phys. Lett., 51, 1007 (1987). [DOI: http://dx.doi.org/10.1063/1.98813] https://doi.org/10.1063/1.98813
  18. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron., 47, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0038-1101(02)00210-1] https://doi.org/10.1016/S0038-1101(02)00210-1