DOI QR코드

DOI QR Code

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E. ;
  • Kanda, Isao ;
  • Okazaki, Yukiyo ;
  • Wakamatsu, Shinji ;
  • Basaldud, Roberto ;
  • Horikoshi, Nobuji ;
  • Ortinez, Jose A. ;
  • Ramos-Benitez, Victor R. ;
  • Cardenas, Beatriz
  • Received : 2014.07.07
  • Accepted : 2015.03.04
  • Published : 2015.06.30

Abstract

In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

Keywords

Field campaign;Ozone;Ozonesonde;Mexico City Metropolitan Area;Mixing layer

References

  1. Athanassiadis, G.A., Trivikrama Rao, S., Ku, J.-Y., Clark, R.D. (2002) Boundary layer evolution and its influence on ground-level ozone concentrations. Environmental Fluid Mechanics 2, 339-357. https://doi.org/10.1023/A:1020456018087
  2. CONAPO (2012) Consejo Nacional de Poblacion, Delimitacion de las zonas metropolitanas de Mexico 2010. Secretaria de Desarrollo Social, Consejo Nacional de Poblacion, Instituto Nacional de Estadistica, Geografia e Informatica. Mexico.
  3. Danielsen, E.F. (1968) Stratospheric-Tropospheric exchange based on radioactivity, ozone and potential vorticity. Journal of the Atmospheric Sciences 25, 502-518. https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2
  4. Davidson, A. (1993) Update on Ozone Trends in California's South Coast Air Basin. Air & Waste 43(2), 226-240. https://doi.org/10.1080/1073161X.1993.10467130
  5. de Foy, B., Clappier, A., Molina, L.T., Molina, M.J. (2006) Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow. Atmospheric Chemistry and Physics 6, 1249-1265. https://doi.org/10.5194/acp-6-1249-2006
  6. Doran, J.C., Abbott, S., Archuleta, J., Bian, X., Chow, J., Coulter, R.L., de Wekker, S.F.J., Edgerton, S., Elliott, S., Fernandez, A., Fast, J.D., Hubbe, J.M., King, C., Langley, D., Leach, J., Lee, J.T., Martin, T.J., Martinez, D., Martinez, J.L., Mercado, G., Mora, V., Mulhearn, M., Pena, J.L., Petty, R., Porch, W., Russell, C., Salas, R., Shannon, J.D., Shaw, W.J., Sosa, G., Tellier, L., Templeman, B., Watson, J.G., White, R., Whiteman, C.D., Wolfe, D. (1998) The IMADA-AVER Boundary Layer Experiment in the Mexico City Area. Bulletin of the American Meteorological Society 79, 11.
  7. Garcia-Reynoso, A., Jazcilevich, L., Ruiz-Suarez, G., Torres-Jardon, R., Suarez Lastra, M., Resendiz Juarez, N.A. (2009) Ozone weekend effect analysis in Mexico City. Atmosfera 22, 281-297.
  8. Haman, C.L., Couzo, E., Flynn, J.H., Vizuete, W., Heffron, B., Lefer, B.L. (2014), Relationship between boundary layer heights and growth rates with groundlevel ozone in Houston, Texas, Journal of Geophysical Research: Atmospheres 119, 6230-6245, doi:10.1002/2013JD020473. https://doi.org/10.1002/2013JD020473
  9. Holzworth, C.G. (1964) Estimates of mean maximum wind depths in the contiguous United States. Monthly Weather Review 92, 235-242. https://doi.org/10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2
  10. INEM-2008 (2013) Inventario Nacional de Emisiones de Mexico, SEMARNAT-INE, Mexico.
  11. Kanda, I., Basaldud, R., Horikoshi, N., Okazaki, Y., Benitez-Garcia, S.E., Ortinez, A., Ramos-Benitez, V.R., Cardenas, B., Wakamatsu, S. (2014) Interference of sulphur dioxide to balloon-borne ECC ozone sensors over the Valley of Mexico. Asian Journal of Atmospheric Environment 8, 162-174. https://doi.org/10.5572/ajae.2014.8.3.162
  12. Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., Gwynne, M. (1996) Urban air pollution in megacities of the world. Atmospheric Environment 30, 681-686. https://doi.org/10.1016/1352-2310(95)00219-7
  13. Molina, L.T., Kolb, C.E., de Foy, B., Lamb, B.K., Brune, W.H., Jimenez, J.L., Ramos-Villegas, J.L., Sarmiento, J., Paramo-Figueroa, V.H., Cardenas, B., Gutierrez-Avedoy, V., Molina, M.J. (2007) Air quality in North America's most populous city- Overview of the MCMA-2003 campaign. Atmospheric Chemistry and Physics 7, 2447-2473. https://doi.org/10.5194/acp-7-2447-2007
  14. Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L. (2012) Seasonal and diurnal variation of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288. https://doi.org/10.1016/j.atmosenv.2011.09.060
  15. Penkett, S.A., Reeves, C.E., Bandy, B.J., Kent, J.M., Richer, H.R. (1998) Comparison of calculated and measured peroxide data collected in marine air to investigate prominent features of the annual cycle of ozone in the troposphere. Journal of Geophysical Research 103, 13377-13388. https://doi.org/10.1029/97JD02852
  16. Rivera, C., Sosa, G., Wohrnschimmel, H., de Foy, B., Johansson, M., Galle, B. (2009) Tula industrial complex (Mexico) emissions of $SO_2$ and $NO_2$ during the MCMA 2006 field campaign using a mobile mini-DOAS system. Atmospheric Chemistry and Physics 9, 6351-6361. https://doi.org/10.5194/acp-9-6351-2009
  17. SEMARNAT: Secretaria de Medio Ambiente y Recursos Naturales. http://sinea.semarnat.gob.mx/sinea.php?process=UkVQT1JURUFET1I=&categ=0Consulted:2015-01-12.
  18. Shaw, W.J., Pekour, M.S., Coulter, R.L., Martin, T.J., Walters, J.T. (2007) The daytime mixing layer observed by radiosonde, profiler, and lidar during MILAGRO. Atmospheric Chemistry and Physics Discuss. 7, 15025-15065. https://doi.org/10.5194/acpd-7-15025-2007
  19. Singh, H.B., Ludwing, F.L., Johnson, W.B. (1978) Tropospheric ozone: concentrations and variables in clean remote atmospheres. Atmospheric Environment 12, 2185-2196. https://doi.org/10.1016/0004-6981(78)90174-9
  20. SMA-GDF (2004) Inventario de emisiones de la Zona Metropolitana del Valle de Mexico 2004. Secretaria del Medio Ambiente, Gobierno del Distrito Federal. Mexico.
  21. SMA-GDF (2012) Inventario de emisiones de la Zona Metropolitana del Valle de Mexico 2010. Secretaria del Medio Ambiente, Gobierno del Distrito Federal. Mexico.
  22. Streit, G.E., Guzman, F. (1996) Mexico City air quality: progress of an International collaborative project to define Air quality management options. Atmospheric Environment 30, 723-733. https://doi.org/10.1016/1352-2310(95)00275-8
  23. Thompson, A.M., Yorks, J.E., Miller, S.K., Witte, J.C., Dougherty, K.M., Morris, G.A., Baumgardner, D., Ladino, L., Rappengluck, B. (2008) Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06). Atmospheric Chemistry and Physics 8, 5113-5125. https://doi.org/10.5194/acp-8-5113-2008
  24. Tokyo Metropolitan Research Institute for Environmental Protection: Report on emissions inventory of fine particulate matter ($PM_{2.5}$) and other substances (2011). http://www.tokyokankyo.jp/kankyoken/research/airpollution2 (accessed: 2014/06/23).
  25. Velasco, E., Marquez, C., Bueno, E., Bernabe, R.M., Sanchez, A., Fentanes, O., Wohrnschimmel, H., Cardenas, B., Kamilla, A., Wakamatsu, S., Molina, L.T. (2008) Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmospheric Chemistry and Physics 8, 3061-3079. https://doi.org/10.5194/acp-8-3061-2008
  26. Voss, P.B., Zaveri, R.A., Flocke, F.M., Mao, H., Hartley, T.P., DeAmicis, P., Deonandan, I., Contreras-Jimenez, I., Martinez-Antonio, O., Figueroa Estrada, M., Greenberg, D., Campos, T.L., Weinheimer, A.J., Knapp, D.J., Montzka, D.D., Crounse, J.D., Wennberg, P.O., Apel, E., Madronich, S. de Foy, B. (2010) Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons. Atmospheric Chemistry and Physics 10, 7137-7159. https://doi.org/10.5194/acp-10-7137-2010
  27. Wakamatsu, S., Ohara, T., Uno, I. (1996) Recent trends in precursors concentrations and oxidant distributions in the Tokyo and Osaka areas. Atmospheric Environment 30, 715-721. https://doi.org/10.1016/1352-2310(95)00274-X
  28. WMO-IGAC (2012) World Meteorological Organization - International Global Atmospheric Chemistry, Impacts of Megacities on air Pollution and Climate. Switzerland, pp. 123-124.
  29. World Bank (2006) Vulnerability to Air Pollution in Latin America and the Caribbean Region. Latin America and Caribbean Region. Sustainable Development Working Paper 28.
  30. Zhang, Y., Dubey, M.K. (2009) Comparisons of WRF/Chem simulated $O_3$ concentrations in Mexico City with ground-based RAMA measurements during the MILAGRO period. Atmospheric Environment 43, 4622-4631. https://doi.org/10.1016/j.atmosenv.2009.05.039

Cited by

  1. Comparison of Ozone Production Regimes between Two Mexican Cities: Guadalajara and Mexico City vol.7, pp.7, 2016, https://doi.org/10.3390/atmos7070091