Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Lage, Josiane F. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Carvalho, Isabela P.C. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Messana, Juliana D. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Canesin, Roberta. C. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Reis, Ricardo A. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista) ;
  • Berchielli, Telma T. (Department of Animal Sciences, UNESP, Univ. Estadual Paulista)
  • Received : 2014.11.25
  • Accepted : 2015.02.10
  • Published : 2015.07.01


The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.


Supported by : Sao Paulo Research Foundation (FAPESP)


  1. Allen, M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598-1624.
  2. AMSA (American Meat Science Association). 1995. Research guidelines for cookery, sensory evaluation and tenderness measurements of fresh meat. Chicago: National Livestock and Meat Board, IL, USA.
  3. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  4. Belew, J. B., J. C. Brooks, D. R. McKenna, and J. W. Savell. 2003. Warner-Bratzler shear evaluations of 40 bovine muscles. Meat Sci. 64:507-512.
  5. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.
  6. Bouton, P. E., A. L. Fisher, P. V. Harris, and R. I. Baxter. 1973. A comparison of the effects of some post-slaughter treatments on the tenderness of beef. Int. J. Food Sci. Technol. 8:39-49.
  7. Cross, H. R., R. L. West, and T. R. Dutson. 1981. Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Sci. 5:261-266.
  8. Curi, R. A., L. A. L. Chardulo, M. C. Mason, M. D. B. Arrigoni, A. C. Silveira, and H. N. de Oliveira. 2009. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Genet. 40:456-462.
  9. Daley, C. A., A. Abbott, P. S. Doyle, G. A. Nader, and S. Larson. 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 9:10.
  10. Department of Health. 1994. Nutritional Aspects of Cardiovascular Disease. Report on Health and Social Subjects No. 46, HSMO, London, UK.
  11. Duckett, S. K. and M. H. Gillis. 2010. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 88:2684-2691.
  12. Fernandes, A. R. M., A. A. M. Sampaio, W. Henrique, E. A. Oliveira, R. R. Tullio, and D. Perecin. 2008. Carcass and meat characteristic of cattle receiving differents diets in feedlot. Arq. Bras. Med. Vet. Zootec. 60:139-147.
  13. Fiorentini, G. 2013. Nellore Steers Finished in Feedlot with Differents Lipidic Sources. PhD Tesis, Universidade Estadual Paulista, Jaboticabal, Brazil.
  14. Fiorentini, G., T. T. Berchielli, M. C. A. Santana, P. H. M. Dian, R. A. Reis, A. A. M. Sampaio, and M. V. Biehl. 2012. Qualitative characteristics of meat from confined crossbred heifers fed with lipid sources. Sci. Agric. 69:336-344.
  15. Folch, J., M. Lees, and G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  16. Herdmann, A., K. Nuernberg, J. Martin, G. Nuernberg, and O. Doran. 2010. Effect of dietary fatty acids on expression of lipogenic enzymes and fatty acid profile in tissues of bulls. Animal 4:755-762.
  17. Houben, J. H., A. van Dijk, G. Eikelenboom, and A. H. Hoving-Bolink. 2000. Effect of dietary vitamin E supplementation, fat level and packaging on colour stability and lipid oxidation in minced beef. Meat Sci. 55:331-336.
  18. Ip, C. 1997. Review of the effects of trans fatty acids, oleic acid, n-3 polyunsaturated fatty acids, and conjugated linoleic acid on mammary carcinogenesis in animals. Am. J. Clin. Nutr. 66:I523S-I529S.
  19. Jenkins, T. C. and W. C. Bridges Jr. 2007. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. Technol. 109:778-789.
  20. Koolmees, P. A., F. Korteknie, and F. J. M. Smulders. 1986. Accuracy and utility of sarcomere length assessment by laser diffraction. Food Microstructure 5:71-76.
  21. Kramer, J. K. G., V. Fellner, M. E. R. Dugan, F. D. Sauner, and M. M. Mossoba, and M. P. Yurawecz. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis conjugated dienes and total trans fatty acids. Lipids 32:1219-1228.
  22. Ladeira, M. M., L. C. Santarosa, M. L. Chizzotti, E. M. Ramos, O. R. Machado Neto, D. M Oliveira, J. R. R. Carvalho, L. S. Lopes, and J. S. Ribeiro. 2014. Fatty acid profile, color and lipid oxidation of meat from young bulls fed ground soybean or rumen protected fat with or without monensin. Meat Sci. 96:597-605.
  23. Lage, J. F., P. V. R. Paulino, S. C. V. Filho, E. J. O. Souza, M. S. Duarte, P. D. B. Benedeti, N. K. P. Souza, and R. B. Cox. 2012. Influence of genetic type and level of concentrate in the finishing diet on carcass and meat quality traits in beef heifers. Meat Sci. 90:770-774.
  24. Lopes, L. S., M. M. Ladeira, O. R. Machado Neto, E. M. Ramos, P. V. R. Paulino, M. L. Chizzotti, and M. C. Guerreiro. 2012. Chemical composition and of fatty acids of the muscle longissimus dorsi and backfat of Red Norte and young Nellore bulls. R. Bras. Zootec. 41:978-985.
  25. MacDougall, D. B. 1994. Colour of meat. In: Quality Attributes and Their Measurement in Meat, Poultry and Fish Products (Eds. A. M. Pearson and T. R. Dutson). Advances in Meat Research Series 9. Blackie Academic and Professional, London, UK. pp. 79-93.
  26. Mach, N., A. Bach, A. Velarde, and M. Devant. 2008. Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 78:232-238.
  27. Malau-Aduli, A. E. O., B. D. Siebert, C. D. K. Bottema, and W. S. Pitchford. 1997. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 48:715-722.
  28. Moloney, A. P., C. Kennedy, F. Noci, F. J. Monahan, and J. P. Kerry. 2012. Lipid and colour stability of M. longissimus muscle from lambs fed camelina or linseed as oil or seeds. Meat Sci. 92:1-7.
  29. Muchenje, V., K. Dzama, M. Chimonyo, P. E. Strydom, and J. G. Raats. 2009. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 112:279-289.
  30. Neath, K. E., A. N. Del Barrio, R. M. Lapitan, J. R. V. Herrera, L. C. Cruz, T. Fujihara, S. Muroya, K. Chikuni, M. Hirabayashi, and Y. Kanai. 2007. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Sci. 75:499-505.
  31. Nelson, M. L., J. R. Busboom, C. F. Ross, and J. V. O'Fallon. 2008. Effects of supplemental fat on growth performance and quality of beef from steers fed corn finishing diets. J. Anim. Sci. 86:936-948.
  32. National Research Council. 2000. Nutrient Requirements of Beef Cattle. National Academy Press. Washington, DC, USA.
  33. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. National Academy Press. Washington, DC, USA.
  34. Oliveira, D. M., M. M. Ladeira, M. L. Chizzotti, O. R. Machado Neto, E. M. Ramos, T. M. Goncalves, M. S. Bassi, D. P. Lanna, and J. S. Ribeiro. 2011. Fatty acid profile and qualitative characteristics of meat from zebu steers fed with different oilseeds. J. Anim. Sci. 89: 2546-2555.
  35. Oliveira, E. A., A. A. M. Sampaio, W. Henrique, T. M. Pivaro, B. L. Rosa, A. R. M. Fernandes, and A. T. Andrade. 2012. Quality traits and lipid composition of meat from Nellore young bulls fed with different oils either protected or unprotected from rumen degradation. Meat Sci. 90:28-35.
  36. Page, J. K., D. M. Wulf, and T. R. Schwotzer. 2001. A survey of beef muscle color and pH. J. Anim. Sci. 79:678-687.
  37. Sanhueza, J., S. Nieto, and A. Valenzuela. 2002. Conjugated linoleic acid: a trans isomer fatty acid potentially beneficial. Rev. Chil. Nutr. 29:98-105.
  38. Savell, J. W., S. L. Mueller, and B. E. Baird. 2005. The chilling of carcasses. Meat Sci. 70:449-459.
  39. Scollan, N., J. F. Hocquette, K. Nuernberg, D. Dannenberger, I. Richardson, and A. Moloney. 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 74:17-33.
  40. Smith, G. C., J. W. Savell, H. G. Dolezal, T. G. Field, D. R. Gill, D. B. Griffin, D. S. Hale, J. B. Morgan, S. L. Northcutt, and J. D. Tatum. 1995. The final report of the national beef quality audit. National Cattleman's Association, Englewood, CO, USA.
  41. Ulbricht, T. L. V. and D. A. T. Southgate. 1991. Coronary heart disease: Seven dietary factors. Lancet 338:985-992.
  42. Wood, J. D., R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. R. Sheard, and M. Enser. 2003. Effects of fatty acids on meat quality: A review. Meat Sci. 66:21-32.

Cited by

  1. Effect of cassava bioethanol by-product and crude palm oil in Brahman x Thai native yearling heifer cattle diets: II. Carcass characteristics and meat quality vol.47, pp.8, 2015,
  2. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue vol.36, pp.1, 2016,
  3. Effects of quantitative feed restriction and sex on carcass traits, meat quality and meat lipid profile of Morada Nova lambs vol.8, pp.1, 2017,
  4. Fatty acid, physicochemical composition and sensory attributes of meat from lambs fed diets containing licuri cake vol.13, pp.11, 2018,
  5. Effects of different forms of soybean lipids on enteric methane emission, performance and meat quality of feedlot Nellore vol.156, pp.3, 2018,
  6. Physicochemical Quality, Fatty Acid Composition, and Sensory Analysis of Nellore Steers Meat Fed with Inclusion of Condensed Tannin in the Diet vol.83, pp.5, 2018,