Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi (School of Statistics, Shanxi University of Finance and Economics) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University)
  • Received : 2015.01.27
  • Accepted : 2015.04.25
  • Published : 2015.07.01


The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.


Supported by : Shanxi Scholarship Council of China


  1. Blott, S., J. J. Kim, S. Moisio, A. Schmidt-Kuntzel, A. Cornet, P. Berzi, N. Cambisano, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir, and W. Coppieters. 2003. Molecular dissection of a quantitative trait locus: a phenylalanine-totyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253-266.
  2. Cierco-Ayrolles, C., S. Dejean, A. Legarra, H. Gilbert, T. Druet, F. Ytournel, D. Estivals, N. Oumouhou, and B. Mangin. 2010. Does probabilistic modelling of linkage disequilibrium evolution improve the accuracy of QTL location in animal pedigree? Genet. Sel. Evol. 42:38.
  3. Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021-1031.
  4. Druet, T. and M. Georges. 2010. A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184:789-798.
  5. Erbe, M., F. Ytournel, E. C. G. Pimentel, A. R. Sharifi, and H. Simianer. 2011. Power and robustness of three whole genome association mapping approaches in selected populations. J. Anim. Breed. Genet. 128:3-14.
  6. Fernando, R. L. and D. Garrick. 2013. Bayesian methods applied to GWAS. Methods Mol. Biol. 1019:237-274.
  7. Fernando, R. L., D. Nettleton, B. R. Southey, J. C. M. Dekkers, M. F. Rothschild, and M. Soller. 2004. Controlling the proportion of false positives in multiple dependent tests. Genetics 166:611-619.
  8. Garrick, D. J. 2011. The nature, scope and impact of genomic prediction in beef cattle in the United States. Genet. Sel. Evol. 43:17.
  9. Grapes, L., J. C. M. Dekkers, M. F. Rothschild, and R. L. Fernando. 2004. Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics 166:1561-1570.
  10. Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick. 2011. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 12:186.
  11. Hoggart, C. J., J. C. Whittaker, M. De Iorio, and D. J. Balding. 2008. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 4(7):e1000130.
  12. Kim, J. J. and M. Georges. 2002. Evaluation of a new finemapping method exploiting linkage disequilibrium: A case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian Australas. J. Anim. Sci. 15:1250-1256.
  13. Lee, Y. S., J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Park, and J. S. Yeo.2008. Identification of candidate SNP (single nucleotide polymorphism) for growth and carcass traits related to QTL on chromosome 6 in Hanwoo (Korean Cattle). Asian Australas. J. Anim. Sci. 21:1703-1709.
  14. Li, C., J. Basarab, W. M. Snelling, B. Benkel, J. Kneeland, B. Murdoch, C. Hansen, and S. S. Moore. 2004. Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line of Bos taurus. J. Anim. Sci. 82:967-972.
  15. Li, Y. 2012. Genome-wide association study to identify QTLfor growth and carcass quality traits in Korean native cattle, Hanwoo. Ph.D. Thesis, Yeungnam University, Gyeongsan, Gyeongbuk, Korea.
  16. Li, Y., J. H. Lee, Y. M. Lee, and J. J. Kim.2011. Application of linkage disequilibrium mapping methods to detect QTL for carcass quality on chromosome 6 using a high density SNP map in Hanwoo. Asian Australas. J. Anim. Sci. 24:457-462.
  17. MacLeod, I. M., B. J. Hayes, K. W. Savin, A. J. Chamberlain, H. C. McPartlan, and M. E. Goddard. 2010. Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms. J. Anim. Breed. Genet. 127:133-142.
  18. Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. Van Tassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PloS One 4(4):e5350.
  19. McClure, M. C., N. S. Morsci, R. D. Schnabel, J. W. Kim, P. Yao, M. M. Rolf, S. D. McKay, S. J. Gregg, R. H. Chapple, S. L. Northcutt, and J. F. Taylor. 2010. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41:597-607.
  20. Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  21. Meuwissen, T. H. and M. E. Goddard. 2001. Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33:605-634.
  22. Misztal, I. 2011. FAQ for genomic selection. J. Anim. Breed. Genet. 128:245-246.
  23. Mizoshita, K., A. Takano, T. Watanabe, A. Takasuga, and Y. Sugimoto. 2005. Identification of a 1.1-Mb region for a carcass weight QTL onbovine Chromosome 14. Mamm. Genome 16:532-537.
  24. Mizoshita, K., T. Watanabe, H. Hayashi, C. Kubota, H. Yamakuchi, J. Todoroki, and Y. Sugimoto. 2004. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J. Anim. Sci. 82:3415-3420.
  25. Morris, C. A., W. S. Pitchford, N. G. Cullen, A. K. Esmailizadeh, S. M. Hickey, D. Hyndman, K. G. Dodds, R. A. Afolayan, A. M. Crawford, and C. D. K. Bottema. 2009. Quantitative trait loci for live animal and carcass composition traits in Jersey and Limousin back-cross cattle finished on pasture or feedlot. Anim. Genet. 40:648-654.
  26. NIAS. 2009. Annual Research Report Accessed August 24, 2011.
  27. Perez-Enciso, M. and I. Misztal. 2011. Qxpak.5: Old mixed model solutions for new genomics problems. BMC Bioinformatics 12:202.
  28. Sun, X., D. Habier, R. L. Fernando, D. J. Garrick, and J. C. M. Dekkers. 2011. Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian Methods. BMC Proceedings 5(Suppl 3):S13.
  29. Stone, R. T., J. W. Keele, S. D. Shackelford, S. M. Kappes, and M. Koohmaraie. 1999. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci.77:1379-1384.
  30. Uleberg, E. and T. H. E. Meuwissen. 2010. Fine mapping and detection of the causative mutation underlying quantitative trait loci. J. Anim. Breed. Genet. 127:404-410.
  31. Xu, S. 2003. Estimating polygenic effects using markers of the entire genome. Genetics 163:789-801.
  32. Xu, S. 2003. Theoretical basis of the Beavis effect. Genetics 165:2259-2268.
  33. Zhao, H. H., R. L. Fernando, and J. C. M. Dekkers. 2007. Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics 175:1975-1986.

Cited by

  1. Effective Population Size and Signatures of Selection Using Bovine 50K SNP Chips in Korean Native Cattle (Hanwoo) vol.11, pp.1176-9343, 2015,
  2. Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population vol.29, pp.11, 2016,
  3. Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds vol.48, pp.1, 2016,