Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

  • Kang, H.J. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Trang, N.H. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Baik, M. (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2015.01.21
  • Accepted : 2015.03.02
  • Published : 2015.08.01


This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.


  1. Ahn, J., X. Li, Y. M. Choi, S. Shin, S. A. Oh, Y. Suh, T. H. Nguyen, M. Baik, S. Hwang, and K. Lee. 2014. Differential expressions of G0/G1 switch gene 2 and comparative gene identification-58 are associated with fat content in bovine muscle. Lipids 49:1-14.
  2. Baik, M., J. H. Yu, and L. Hennighausen. 2011. Growth hormone-STAT5 regulation of growth, hepatocellular carcinoma, and liver metabolism. Ann. NY Acad. Sci. 1229:29-37.
  3. Baik, M., T. T. T. Vu, M. Y. Piao, and H. J. kang. 2014. Association of DNA methylation levels with tissue-specific expression of adipogenic and lipogenic genes in longissimus dorsi muscle of Korean Cattle. Asian Australas. J. Anim. Sci. 27:1493-1498.
  4. Blum, J. W., W. Schnyder, P. L. Kunz, A. K. Blom, H. Bickel, and A. Schurch. 1985. Reduced and compensatory growth: Endocrine and metabolic changes during feed restriction and refeeding in steers. J. Nutr. 115:417-424.
  5. Bong, J. J., J. Y. Jeong, P. Rajasekar, Y. M. Cho, E. G. Kwon, H. C. Kim, B. H. Paek, and M. Baik. 2012. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers. Meat Sci. 91:284-293.
  6. Bowling, R. A., G. C. Smith, Z. L. Carpenter, T. R. Dutson, and W. M. Oliver. 1977. Comparison of forage-finished and grainfinished beef carcasses. J. Anim. Sci. 45:209-215.
  7. Brandstetter, A. M., M. W. Pfaffl, J. F. Hocquette, D. E. Gerrard, B. Picard, Y. Geay, and H. Sauerwein. 2000. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle. J. Anim. Sci. 78:629-637.
  8. Choi, B., K. Ryu, J. Bong, J. Lee, Y. Choy, S. Son, O. Han, and M. Baik. 2010. Comparison of steroid hormone concentrations and mRNA levels of steroid receptor genes in longissimus dorsi muscle and subcutaneous fat between bulls and steers and association with carcass traits in Korean cattle. Livest. Sci. 131:218-226.
  9. da Costa, N., C. McGillivray, Q. Bai, J. D. Wood, G. Evans, and K. C. Chang. 2004. Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. J. Nutr. 134:2191-2199.
  10. Dauncey, M. J., K. A. Burton, P. White, A. P. Harrison, R. S. Gilmour, C. Duchamp, and D. Cattaneo. 1994. Nutritional regulation of growth hormone receptor gene expression. FASEB. J. 8:81-88.
  11. Davey, H. W., T. Xie, M. J. McLachlan, R. J. Wilkins, D. J. Waxman, and D. R. Grattan. 2001. STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology 142:3836-3841.
  12. Drouillard, J. S., C. L. Ferrell, T. J. Klopfenstein, and R. A. Britton. 1991. Compensatory growth following metabolizable protein or energy restrictions in beef steers. J. Anim. Sci. 69:811-818.
  13. Hayden, J. M., J. E. Williams, and R. J. Collier. 1993. Plasma growth hormone, insulin-like growth factor, insulin, and thyroid hormone association with body protein and fat accretion in steers undergoing compensatory gain after dietary energy restriction. J. Anim. Sci. 71:3327-3338.
  14. Herbst, K. L. and S. Bhasin. 2004. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7:271-277.
  15. Hornick, J. L., C. Van Eenaeme, M. Diez, V. Minet, and L. Istasse. 1998. Different periods of feed restriction before compensatory growth in Belgian Blue bulls: II. Plasma metabolites and hormones. J. Anim. Sci. 76:260-271.
  16. Isaksson, O. G. P., S. Eden, and J. O. Jansson. 1985. Mode of action of pituitary growth hormone on target cells. Annu. Rev. Physiol. 47:483-499.
  17. Jeong, J. Y., J. S. Kim, T. H. Nguyen, H. J. Lee, and M. Baik. 2013b. Wnt/$\beta$-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Anim. Genet. 44:627-635.
  18. Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013a. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704.
  19. Kappeler, L., C. De Magalhaes Filho, P. Leneuve, J. Xu, N. Brunel, C. Chatziantoniou, Y. Le Bouc, and M. Holzenberger. 2009. Early postnatal nutrition determines somatotropic function in mice. Endocrinology 150:314-323.
  20. Katsumata, M., D. Cattaneo, P. White, K. A. Burton, and M. J. Dauncey. 2000. Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is selectively regulated by postnatal undernutrition. J. Nutr. 130:2482-2488.
  21. Kelly, A. K., S. M. Waters, M. McGee, J. A. Browne, D. A. Magee, and D. A. Kenny. 2013. Expression of key genes of the somatotropic axis in longissimus dorsi muscle of beef heifers phenotypically divergent for residual feed intake. J. Anim. Sci. 91:159-167.
  22. Klover, P., W. Chen, B. M. Zhu, and L. Hennighausen. 2009. Skeletal muscle growth and fiber composition in mice are regulated through the transcription factors STAT5a/b: linking growth hormone to the androgen receptor. FASEB J. 23:3140-3148.
  23. Kwon, D. H., W. Kang, Y. S. Nam, M. S. Lee, I. K. Lee, H. J. Kim, P. Rajasekar J. H. Lee, and M. Baik. 2012. Dietary protein restriction induces steatohepatitis and alters leptin/signal transducers and activators of transcription 3 signaling in lactating rats. J. Nutr. Biochem. 23:791-799.
  24. Laliotis, G. P., I. Bizelis, and E. Rogdakis. 2010. Comparative approach of the de novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: From biochemical level to the main regulatory lipogenic genes. Curr. Genomics 11:168-183.
  25. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta{Y}$ method. Methods 25:402-408.
  26. Murphy, T. A. and S. C. Loerch. 1994. Effects of restricted feeding of growing steers on performance, carcass characteristics, and composition. J. Anim. Sci. 72:2497-2507.
  27. Roberts, A. J., S. I. Paisley, T. W. Geary, E. E. Grings, R. C. Waterman, and M. D. MacNeil. 2007. Effects of restricted feeding of beef heifers during the postweaning period on growth, efficiency, and ultrasound carcass characteristics. J. Anim. Sci. 85:2740-2745.
  28. Rossi, J. E., S. C. Loerch, S. J. Moeller, and J. P. Schoonmaker. 2001. Effects of programmed growth rate and days fed on performance and carcass characteristics of feedlot steers. J. Anim. Sci. 79:1394-1401.
  29. Schmidt, T. B., K. C. Olson, M. L. Linville, J. H. Clark, D. L. Meyer, M. M. Brandt, C. A. Stahl, G. K. Rentfrow, and E. P. Berg. 2005. Effects of dry matter intake restriction on growth performance and carcass merit of finishing steers. Prof. Anim. Sci. 21:332-38.
  30. Tatum, J. D., B. L. Klein, F. L. Williams Jr., and R. A. Bowling. 1988. Influence of diet on growth rate and carcass composition of steers differing in frame size and muscle thickness. J. Anim. Sci. 66:1942-954.

Cited by

  1. - Invited Review - Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants vol.29, pp.1, 2015,
  2. Expression of genes related to the regulation of muscle protein turnover in Angus and Nellore bulls1 vol.94, pp.4, 2016,
  3. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity1 vol.95, pp.5, 2017,