DOI QR코드

DOI QR Code

Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets

  • Chiang, Ming-Lun (Department of Tourism and Hospitality, Kainan University) ;
  • Chen, Hsi-Chia (Council of Agriculture, Executive Yuan) ;
  • Chen, Kun-Nan (Department of Mechanical Engineering, Tungnan University) ;
  • Lin, Yu-Chun (Livestock Research Institute, Council of Agriculture, Executive Yuan) ;
  • Lin, Ya-Ting (Department of Animal Science and Technology, National Taiwan University) ;
  • Chen, Ming-Ju (Department of Animal Science and Technology, National Taiwan University)
  • Received : 2014.10.07
  • Accepted : 2015.01.26
  • Published : 2015.08.01

Abstract

Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol) soybean meal, 1.0% (wt/vol) molasses and 1.0% (wt/vol) sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05) body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry.

Keywords

Lactobacillus johnsonii;Lactobacillus mucosae;Soybean Meal;Molasses;Sodium Acetate;Weaned Piglet

References

  1. Berg, R. D. 1995. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 3:149-154. https://doi.org/10.1016/S0966-842X(00)88906-4
  2. Bergonzelli, G. E., D. Granato, R. D. Pridmore, L. F. Marvin-Guy, D. Donnicola, and I. E. Corthesy-Theulaz. 2006. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: Potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74:425-434. https://doi.org/10.1128/IAI.74.1.425-434.2006
  3. Blomberg, L., A. Henriksson, and P. L. Conway. 1993. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl. Environ. Microbiol. 59:34-39.
  4. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455-475. https://doi.org/10.1080/00401706.1960.10489912
  5. Casewell, M., C. Friis, E. Marco, P. Mcmullin, and I. Phillips. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52:159-161. https://doi.org/10.1093/jac/dkg313
  6. Casey, P. G., G. D. Casey, G. E. Gardiner, M. Tangney, C. Stanton, R. P. Ross, C. Hill, and G. F. Fitzgerald. 2004. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbiol. 39:431-438. https://doi.org/10.1111/j.1472-765X.2004.01603.x
  7. Chang, Y. H., J. K. Kim, H. J. Kim, W. Y. Kim, Y. B. Kim, and Y. H. Park. 2001. Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek 80:193-199. https://doi.org/10.1023/A:1012213728917
  8. Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai, and M. J. Chen. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy. Sci. 95:63-74. https://doi.org/10.3168/jds.2011-4696
  9. Cromwell, G. L., C. C. Calvert, T. R. Cline, J. D. Crenshaw, T. D. Crenshaw, R. A. Easter, R. C. Ewan, C. R. Hamilton, G. M. Hill, A. J. Lewis, D. C. Mahan, E. R. Miller, J. L. Nelssen, J. E. Pettigrew, L. F. Trible, T. L. Veum, and J. T. Yen. 1999. Variability among sources and laboratories in nutrient analyses of corn and soybean meal. J. Amim. Sci. 77:3262-3273.
  10. Flint, J. F. and M. R. Garner. 2009. Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. J. Appl. Poult. Res. 18:367-378. https://doi.org/10.3382/japr.2008-00133
  11. Gao, X., S. Y. Qiao, and W. Q. Lu. 2009. Determination of an economical medium for growth of Lactobacillus fermentum using response surface methodology. Lett. Appl. Microbiol. 49:556-561. https://doi.org/10.1111/j.1472-765X.2009.02705.x
  12. Granato, D., G. E. Bergonzelli, R. D. Pridmore, L. Marvin, M. Rouvet, and I. E. Corthesy-Theulaz. 2004. Cell surfaceassociated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 72:2160-2169. https://doi.org/10.1128/IAI.72.4.2160-2169.2004
  13. Guerra, N. P., P. F. Bernardez, J. Mendez, P. Cachaldora, and L. P. Castro. 2007. Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim. Feed Sci. Technol. 134:89-107. https://doi.org/10.1016/j.anifeedsci.2006.05.010
  14. Konstantinov, S. R., H. Smidt, A. D. L. Akkermans, L. Casini, P. Trevisi, M. Mazzoni, S. De Filippi, P. Bosi, and W. M. de Vos. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66:599-607. https://doi.org/10.1111/j.1574-6941.2008.00517.x
  15. La Ragione R. M., A. Narbad, M. J. Gasson, and M. J. Woodward. 2004. In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett. Appl. Microbiol. 38:197-205. https://doi.org/10.1111/j.1472-765X.2004.01474.x
  16. Lee, J. H., V. D. Valeriano, Y. R. Shin, J. P. Chae, G. B. Kim, J. S. Ham, J. Chun, and D. K. Kang. 2012. Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J. Bacteriol. 194:4766. https://doi.org/10.1128/JB.01011-12
  17. Li, X. J., L. Y. Yue, X. F. Guan, and S. Y. Qiao. 2008. The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J. Appl. Microbiol. 104:1082-1091. https://doi.org/10.1111/j.1365-2672.2007.03636.x
  18. Lim, C. H., R. A. Rahim, Y. W. Ho, and B. A. Arbakariya. 2007. Optimization of growth medium for efficient cultivation of Lactobacillus salivarius i 24 using response surface method. Malaysian J. Microbiol. 3:41-47.
  19. Liu, P., X. S. Piao, S. W. Kim, L. Wang, Y. B. Shen, H. S. Lee, and S. Y. Li. 2008. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J. Anim. Sci. 86:2609-2618. https://doi.org/10.2527/jas.2007-0668
  20. Makkar, R. S. and S. S. Cameotra. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58:428-434. https://doi.org/10.1007/s00253-001-0924-1
  21. Meng, Q. W., L. Yan, X. Ao, T. X. Zhou, J. P. Wang, J. H. Lee, and I. H. Kim. 2010. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 88:3320-3326. https://doi.org/10.2527/jas.2009-2308
  22. Pridmore, R. D., B. Berger, F. Desiere, D. Vilanova, C. Barretto, A. C. Pittet, M. C. Zwahlen, M. Rouvet, E. Altermann, R. Barrangou, B. Mollet, A. Mercenier, T. Klaenhammer, F. Arigoni, and M. A. Schell. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 101:2512-2517. https://doi.org/10.1073/pnas.0307327101
  23. Roos, S., F. Karner, L. Axelsson, and H. Jonsson. 2000. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Syst. Evol. Microbiol. 50:251-258. https://doi.org/10.1099/00207713-50-1-251
  24. Saha, B. C. 2006. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl. Microbiol. Biotechnol. 72:676-680. https://doi.org/10.1007/s00253-006-0364-z
  25. Stiles, J., S. Penkar, M. Plockova, J. Chumchalova, and L. B. Bullerman. 2002. Antifungal activity of sodium acetate and Lactobacillus rhamnosus. J. Food Prot. 65:1188-1191. https://doi.org/10.4315/0362-028X-65.7.1188
  26. Tari, C., H. Gencjal, and F. Tokatli. 2006. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21. Proc. Biochem. 41:659-665. https://doi.org/10.1016/j.procbio.2005.08.012
  27. Van Tassell, M. L. and M. J. Miller. 2011. Lactobacillus adhesion to mucus. Nutrients 3:613-636. https://doi.org/10.3390/nu3050613
  28. Watanabe, M., H. Kinoshita, M. Nitta, R. Yukishita, Y. Kawai, K. Kimura, N. Taketomo, Y. Yamazaki, Y. Tateno, K. Miura, A. Horii, H. Kitazawa, and T. Saito. 2010. Identification of a new adhesin-like protein from Lactobacillus mucosae ME-340 with specific affinity to the human blood group A and B antigens. J. Appl. Microbiol. 109:927-935. https://doi.org/10.1111/j.1365-2672.2010.04719.x
  29. Yu, H. F., A. N. Wang, X. J. Li, and S. Y. Qiao. 2008. Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J. Anim. Feed Sci. 17:61-69. https://doi.org/10.22358/jafs/66470/2008

Cited by

  1. Evaluation of gaseous concentrations, bacterial diversity and microbial quantity in different layers of deep litter system vol.30, pp.2, 2016, https://doi.org/10.5713/ajas.16.0282
  2. Dysbiosis of the Urinary Microbiota Associated With Urine Levels of Proinflammatory Chemokine Interleukin-8 in Female Type 2 Diabetic Patients vol.8, pp.1664-3224, 2017, https://doi.org/10.3389/fimmu.2017.01032
  3. Safety and Growth Optimization of Lactic Acid Bacteria Isolated From Feedlot Cattle for Probiotic Formula Design vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02220
  4. Standardized Preparation for Fecal Microbiota Transplantation in Pigs vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01328
  5. Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets pp.1867-1314, 2019, https://doi.org/10.1007/s12602-018-9511-y