DOI QR코드

DOI QR Code

Pelleting in Associated with Sodium Monensin Increases the Conjugated Linoleic Acids Concentration in the Milk of Dairy Cows Fed Canola Seeds

  • De Marchi, Francilaine Eloise ;
  • Romero, Jakeline Vieira ;
  • Damasceno, Julio Cesar ;
  • Grande, Paula Adriana ;
  • Zeoula, Lucia Maria ;
  • dos Santos, Geraldo Tadeu
  • Received : 2014.11.11
  • Accepted : 2015.02.10
  • Published : 2015.08.01

Abstract

To evaluate the effects of the pelleting and the addition of sodium monensin on production, the chemical and lipid composition of milk and butter physical characteristics, 4 Holstein dairy cows (135 days of lactation) with an average milk production of 14.7 kg/d, were supplemented with a concentrate containing ground canola seeds. The cows were assigned to a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments: i) ground maize, soybean meal, mineral and vitamin supplements, and ground canola seeds (CG); ii) CG concentrate with 31.5 mg of monensin added per kg of dry matter (DM); iii) CG pelleted concentrate; iv) CG concentrate with monensin addition pelleted. There was no difference in milk production and composition. The addition of monensin increased milk concentration of polyunsaturated fatty acids (PUFA), the PUFA/saturated fatty acids (SFA) ratio, and omega 6. The pelleting increased the concentration of monounsaturated fatty acids, the PUFA/SFA ratio, and the omega 6/omega 3 ratio, but decreased the concentration of SFA. The association between pelleting and the addition of monensin increased the concentration of conjugated linoleic acids by 46.9%. The physical characteristics of butter were not affected by the evaluated diets. We concluded that the concentrate with 31.5 mg of monensin added per kg DM basis combined with the pelleting improves the lipid composition of milk from Holstein cows that are on pasture and supplemented with ground canola seeds, without changing the production, milk composition, and spreadability of butter.

Keywords

Animal Production;Ionophore;Heat Treatment;Polyunsaturated Fatty Acid

References

  1. Akraim, F., M. C. Nicot, P. Juaneda, and F. Enjalbert. 2007. Conjugated linolenic acid (CLnA), conjugated linoleic acid (CLA) and other biohydrogenation intermediates in plasma and milk fat of cows fed raw or extruded linseed. Animal 1:835-843. https://doi.org/10.1017/S175173110700002X
  2. ANVISA. 1999. Technical regulation for fixing identity and quality of oils and vegetable fats. Resolution $n^{\circ}$ 482, September 23, 1999. National Health Surveillance Agency, Brasilia, DF, Brazil.
  3. AOAC. 1984. Official Methods of Analysis. 14th edn. Association of Official Analytical Chemists, Washington, DC, USA.
  4. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists. Washington, DC, USA.
  5. AOAC. 1997. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists. Arlington, VA, USA.
  6. Bizac, B. L. and P. Sanders. 2015. Monensin. Food and Agriculture Organization of the United Nations. ftp://ftp.fao.org/ag/agn/jecfa/vetdrug/12-2012-monensin.pdf. Accessed January 20, 2015.
  7. Casali, A. O., E. Detmann, S. d. C. V. Filho, J. C. Pereira, L. T. Henriques, S. G. d. Freitas, and M. F. Paulino. 2008. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. Rev. Bras. Zootecn. 37:335-342. https://doi.org/10.1590/S1516-35982008000200021
  8. Canola Council of Canada. 2015. Canola oil physical and chemical properties. Roman Przybylski. http://www.canolacouncil.org/media/515239/canola_oil_physical_chemical_properties_1.pdf . Accessed January 20, 2015.
  9. Cichosz, G. and H. Czeczot. 2012. Milk fat in prophylaxis of cancer diseases. Pol. Merkur. Lekarski. 33:168-172.
  10. Clandinin, M. T., S. L. Cook, S. D. Konard, M. A. French. 2000. The effect of palmitic acid on lipoprotein cholesterol levels. Int. J. Food Sci. Nutr. 51:S61-S71. https://doi.org/10.1080/096374800750049585
  11. Cochran, R. C., D. C. Adams, J. D. Wallace, M. L. Galyean. 1986. Predicting digestibility diets with internal markers: Evaluation of four potential markers. J. Anim. Sci. 63:1476-1483. https://doi.org/10.2527/jas1986.6351476x
  12. Couvreur, S., C. Hurtaud, C. Lopez, L. Delaby, and J. L. Peyraud. 2006. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 89:1956-1969. https://doi.org/10.3168/jds.S0022-0302(06)72263-9
  13. da Silva, D. C., G. T. Santos, A. F. Branco, J. C. Damasceno, R. Kazama, M. Matsushita, J. A. Horst, W. B. R. dos Santos, and H. V. Petit. 2007. Production performance and milk composition of dairy cows fed whole or ground flaxseed with or without monensin. J. Dairy Sci. 90:2928-2936. https://doi.org/10.3168/jds.2006-573
  14. da Silva-Kazama, D. C., G. T. Santos, P. T. M. Pintro, J. V. Visentainer, R. Kazama, H. V. Petit, and F. E. De Marchi. 2010. Effect of storage on fatty acid profile of butter from cows fed whole or ground flaxseed with or without monensin. R. Bras. Zootec. 39:2297-2303. https://doi.org/10.1590/S1516-35982010001000028
  15. da Silva-Kazama, D. C., C. Cortes, R. Kazama, C. Benchaar, G. T. Santos, L. M. Zeoula, and H. V. Petit. 2011. Ruminal fermentation characteristics and fatty acid profile of ruminal fluid and milk of dairy cows fed flaxseed hulls supplemented with monensin. J. Dairy Res. 78:56-62. https://doi.org/10.1017/S0022029910000865
  16. Detmann, E., M. F. Paulino, J. T. Zervoudakis, S. C. Valadares Filho, R. F. Euclydes, R. P. Lana, and D. S. Queiroz. 2001. Chromium and internal markers on intake of mestizos steers supplemented on pasture. Rev. Bras. Zootec. 30:1600-1609. https://doi.org/10.1590/S1516-35982001000600030
  17. dos Santos, W. B. R., G. T. D. Santos, D. C. da Silva-Kazama, U. Cecato, F. E. De Marchi, J. V. Visentainer, and H. V. Petit. 2011. Production performance and milk composition of grazing dairy cows fed pelleted or non-pelleted concentrates treated with or without lignosulfonate and containing ground sunflower seeds. Anim. Feed Sci. Technol. 169:167-175. https://doi.org/10.1016/j.anifeedsci.2011.06.015
  18. Duffield, T. F., A. R. Rabiee, and I. J. Lean. 2008. A meta-analysis of the impact of monensin in lactating dairy cattle. Part 2. Production effects. J. Dairy Sci. 91:1347-1360. https://doi.org/10.3168/jds.2007-0608
  19. Fernandez, M. L. and D. Webb. 2008. Review: The LDL to HDL cholesterol ratio as a valuable tool to evaluate coronary heart disease risk. J. Am. Coll. Nut. 27:1-5. https://doi.org/10.1080/07315724.2008.10719668
  20. Furst, P. 2002. The striking diet of the island of Crete: lipid nutrition from the palaeolithic to the affluent modern society. Clin. Nutr. 21:9-14. https://doi.org/10.1016/S0261-5614(02)80004-8
  21. Gandra, J. R., F. P. Renno, J. E. de Freitas, M. V. dos Santos, L. F. P. E. Silva, and A. P. C. de Araujo. 2010. Productive performance and milk protein fraction composition of dairy cows supplemented with sodium monensin. R. Bras. Zootec. 39:1810-1817. https://doi.org/10.1590/S1516-35982010000800025
  22. Hall, M. B. 2000. Neutral detergent-soluble carbohydrates: Nutritional relevance and analysis, a laboratory manual. Extension Bulletin, 339. University of Florida, Gainesville, FL, USA.
  23. Hurtaud, C., F. Faucon, S. Couvreur, and J. L. Peyraud. 2010. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J. Dairy Sci. 93:1429-1443. https://doi.org/10.3168/jds.2009-2839
  24. Institute of Medicine. 2002. Dietary Reference Intakes (DRIs) for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy Press. Part 1. Washington, DC, USA.
  25. Ipharraguerre, I. R. and J. H. Clark. 2003. Usefulness of ionophores for lactating dairy cows: A review. Anim. Feed Sci. Technol. 106:39-57. https://doi.org/10.1016/S0377-8401(03)00065-8
  26. ISO (International Organization for Standardization). 1978. Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. https://www.iso.org/obp/ui/#iso:std:iso:12966:-1:ed-1:v1:en Accessed March 30, 2015.
  27. Lana, R. D. P. and J. B. Russell. 2001. Effects of monensin on fermentation and sensitivity of ruminal bacteria from bovine fed high concentrate or forage diets. Rev. Bras. Zootecn. 30:254-260. https://doi.org/10.1590/S1516-35982001000100036
  28. Mensink, R. P., P. L. Zock, A. D. M. Kester, and M. B. Katan. 2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146-55. https://doi.org/10.1093/ajcn/77.5.1146
  29. Mohammed, R., S. M. McGinn, and K. A. Beauchemin. 2011. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci. 94:6057-6068. https://doi.org/10.3168/jds.2011-4369
  30. Nagarajara, T. G., C. J. Newbold, C. J. Van Nevel, and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. In: (Eds. P. N. Hobson, and C. S. Stewart). The rumen microbial ecosystem. 2nd ed. Great Britain: Blackie Academic & Professional, Aberdeen, Scotland, UK. pp. 524-632.
  31. Neves, C. A., W. B. R. dos Santos, G. T. D. Santos, D. C. da Silva, C. C. Jobim, F. S. Santos, J. V. Visentainer, and H. V. Petit. 2009. Production performance and milk composition of dairy cows fed extruded canola seeds treated with or without lignosulfonate. Anim. Feed Sci. Technol. 154:83-92. https://doi.org/10.1016/j.anifeedsci.2009.08.002
  32. Neves, C. A., G. T. Santos, M. Matsushita, E. M. Alves, R. L. Oliveira, A. F. Branco, D. C. da Silva, A. C. Furlan, and H. V. Petit. 2007. Intake, whole tract digestibility, milk production, and milk composition of Holstein cows fed extruded soybeans treated with or without lignosulfonate. Anim. Feed Sci. Technol. 134:32-44. https://doi.org/10.1016/j.anifeedsci.2006.05.015
  33. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC, USA.
  34. Oba, M. and M. S. Allen. 2003. Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation. J. Dairy Sci. 86:2922-2931. https://doi.org/10.3168/jds.S0022-0302(03)73889-2
  35. Oeffner, S. P., Y. Qu, J. Just, N. Quezada, E. Ramsing, M. Keller, G. Cherian, L. Goddick, and G. Bobe. 2013. Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese. J. Dairy Sci. 96:1177-1188. https://doi.org/10.3168/jds.2012-5941
  36. Petit, H. V. 2010. Review: Feed intake, milk production and milk composition of dairy cows fed flaxseed. Can J. Anim. Sci. 90:115-127. https://doi.org/10.4141/CJAS09040
  37. Riaz, M. N. 2000. Chemical and nutritional changes in food. In: Extruders in Food Applications (Ed. M. N. Riaz). CCR Press, Boca Raton, FL, USA. pp. 127-142.
  38. Ruiz, R., G. L. Albrecht, L. O. Tedeschi, G. Jarvis, J. B. Russell, and D. G. Fox. 2001. Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. J. Dairy Sci. 84:1717-1727. https://doi.org/10.3168/jds.S0022-0302(01)74607-3
  39. Schroeder, G. F., G. A. Gagliostro, F. Bargo, J. E. Delahoy, L. D. Muller. 2004. Effects of fat supplementation on milk production and composition by dairy cows on pasture: A review. Livest. Prod. Sci. 86:1-18. https://doi.org/10.1016/S0301-6226(03)00118-0
  40. Schwingshackl, L. and G. Hoffmann. 2014. Dietary fatty acids in the secondary prevention of coronary heart disease: a systematic review, meta-analysis and meta-regression. BMJ Open. 4(4):e004487. https://doi.org/10.1136/bmjopen-2013-004487
  41. Shingfield, K. J., L. Bernard, C. Leroux, and Y. Chilliard. 2010. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4:1140-1166. https://doi.org/10.1017/S1751731110000510
  42. Smith, A. M. and J. T. Reid. 1955. Use of chromic oxide as an indicator of fecal output for the purpose of determining the intake of pasture herbage by grazing cows. J. Dairy Sci. 38:515-524. https://doi.org/10.3168/jds.S0022-0302(55)95006-2
  43. Parodi, P. W. 2009. Milk fat nutrition. Dairy Fats and Related Products (Ed A. Y. Tamime). Wiley-Blackwell, Oxford, UK. p. 344.
  44. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  45. Weiss, W. P., H. R. Conrad, and N. R. St. Pierre. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 39:95-110. https://doi.org/10.1016/0377-8401(92)90034-4
  46. Willians, C. H., D. J. David, and O. Iisma. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385. https://doi.org/10.1017/S002185960001546X
  47. Yang, Z. H., H. Miyahara, and A. Hatanaka. 2011. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-$A^y$ mice with genetic type 2 diabetes. Lipids Health Dis. 10:120-128. https://doi.org/10.1186/1476-511X-10-120

Cited by

  1. Does the dry cow treatment with monensin controlled release capsule affect Parmigiano Reggiano cheese production? vol.101, pp.10, 2018, https://doi.org/10.3168/jds.2017-14299