DOI QR코드

DOI QR Code

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle

  • Yamauchi, Eri (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Suzuki, Yutaka (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • So, Kyoung-Ha (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Suzuki, Kei-ichi (Lab of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University) ;
  • Katoh, Kazuo (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Roh, Sang-Gun (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University)
  • Received : 2014.07.25
  • Accepted : 2014.12.31
  • Published : 2015.08.01

Abstract

Chemerin, highly expressed in adipose and liver tissues, regulates glucose and lipid metabolism and immunity in these tissues in ruminants and mice. Our previous reports showed that chemerin is involved in adipogenesis and lipid metabolism in adipose tissue as an adipokine. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) in the coding region of the chemerin gene and to analyze their effects on carcass traits and intramuscular fatty acid compositions in Japanese Black cattle. The SNPs in the bovine chemerin gene were detected in 232 Japanese Black steers (n = 161) and heifers (n = 71) using DNA sequencing. The results revealed five novel silent mutations: NM_001046020: c.12A>G (4aa), c.165GT (92aa), c.321 A>G (107aa), and c.396C>T (132aa). There was no association between 4 of the SNPs (c.12A>G [4aa], c.165GG [107aa], and c.396C>T) and carcass traits or intramuscular fatty acid compositions. Regarding the remaining SNP, c.276C>T, we found that cattle with genotype CC had a higher beef marbling score than that of cattle with genotype CT, whereas cattle with genotype CT had a higher body condition score (p<0.10). Further, cattle with genotype CC had significantly higher C18:0 content in their intramuscular fat tissue than that of cattle with genotype CT (p<0.05). On the other hand, cattle with genotype CT had significantly higher C14:0 and C16:0 content in their intramuscular fat tissue (p<0.05). Moreover, the number of individuals carrying the minor allele of c.276C>T SNP is small. It is suggested that the c.276C>T SNP of the chemerin gene has potential in cattle breeding using modern methods, such as marker assisted selection. So, further functional and physiological research elucidating the impact of the chemerin gene on bovine lipid metabolism including fatty acid synthesis will help in understanding these results.

Keywords

Japanese Black Cattle;Chemerin;Single Nucleotide Polymorphism;Carcass Trait

References

  1. Abe, T., J. Saburi, H. Hasebe, T. Nakagawa, S. Misumi, T. Nade, H. Nakajima, N. Shoji, M. Kobayashi, and E. Kobayashi. 2009. Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochem. Genet. 47:397-411. https://doi.org/10.1007/s10528-009-9235-5
  2. Ardiyanti, A., F. Abe, H. Kobashikawa, T. Hirayama, T. Sugino, K. Suzuki, and K. Katoh. 2009. Plasma hormone and metabolite concentrations involved in the somatotropic axis of Japanese Black heifers in association with growth hormone gene polymorphism. Domest. Anim. Endocrinol. 37:243-249. https://doi.org/10.1016/j.domaniend.2009.07.002
  3. Ardiyanti, A., T. Abe, N. Tameoka, E. Kobayashi, N. Shoji, Y. Ohtani, K. Suzuki, S. G. Roh, and K. Katoh. 2012. Effects of growth hormone gene polymorphism on lipogenic gene expression levels in diaphragm tissues of Japanese Black Heifers. Asian Australas. J. Anim. Sci. 25:1055-1062. https://doi.org/10.5713/ajas.2012.12029
  4. Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, and D. Segal. 2007. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687-4694. https://doi.org/10.1210/en.2007-0175
  5. Cartegni, L., S. L. Chew, and A. R. Krainer. 2002. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet. 3:285-298. https://doi.org/10.1038/nrg775
  6. Goralski, K. B., T. C. McCarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher, S. D. Parlee, S. Muruganandan, and C. J. Sinal. 2007. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175-28188. https://doi.org/10.1074/jbc.M700793200
  7. Hashemi, M., H. Rezaei, E. Eskandari-Nasab, M. A. Kaykhaei, Z. Zakeri, and M. Taheri. 2012. Association between chemerin rs17173608 and vaspin rs2236242 gene polymorphisms and the metabolic syndrome, a preliminary report. Gene 510:113-117. https://doi.org/10.1016/j.gene.2012.08.048
  8. Higgins, D. G. and P. M. Sharp. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237-244. https://doi.org/10.1016/0378-1119(88)90330-7
  9. Kimchi-Sarfaty, C., J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. 2007. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315:525-528. https://doi.org/10.1126/science.1135308
  10. Lindholm-Perry, A. K., L. A. Kuehn, L. A. Rempel, T. P. L. Smith, R. A. Cushman, T. G. McDaneld, T. L. Wheeler, S. D. Shackelford, D. A. King, and H. C. Freetly. 2012. Evaluation of bovine chemerin (RARRES2) gene variation on beef cattle production traits. Front. Genet. 3:39.
  11. Matsuhashi, T., S. Maruyama, Y. Uemoto, N. Kobayashi, H. Mannen, T. Abe, S. Sakaguchi, and E. Kobayashi. 2011. Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J. Anim. Sci. 89:12-22. https://doi.org/10.2527/jas.2010-3121
  12. Mussig, K., H. Staiger, F. Machicao, C. Thamer, J. Machann, F. Schick, C. D. Claussen, N. Stefan, A. Fritsche, and H. U. Haring. 2009. RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metabolism. 58:519-524. https://doi.org/10.1016/j.metabol.2008.11.011
  13. Roh, S. G., D. Hishikawa, Y. H. Hong, and S. Sasaki. 2006. Control of adipogenesis in ruminants. Anim. Sci. J. 77:472-477. https://doi.org/10.1111/j.1740-0929.2006.00374.x
  14. Roh, S. G., S. H. Song, K. C. Choi, K. Katoh, V. Wittamer, M. Parmentier, and S. Sasaki. 2007. Chemerin-A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362:1013-1018. https://doi.org/10.1016/j.bbrc.2007.08.104
  15. Sell, H., A. Divoux, C. Poitou, A. Basdevant, J. L. Bouillot, P. Bedossa, J. Tordjman, J. Eckel, and K. Clement. 2010. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metabol. 95:2892-2896. https://doi.org/10.1210/jc.2009-2374
  16. Sell, H., J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner, and J. Eckel. 2009. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58:2731-2740. https://doi.org/10.2337/db09-0277
  17. Smith, S. B., D. K. Lunt, K. Y. Chung, C. B. Choi, R. K. Tume, and M. Zembayashi. 2006. Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Anim. Sci. J. 77:478-486. https://doi.org/10.1111/j.1740-0929.2006.00375.x
  18. Song, S. H., K. Fukui, K. Nakajima, T. Kozakai, S. Sasaki, S. G. Roh, and K. Katoh. 2010. Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endonol. 39:97-105. https://doi.org/10.1016/j.domaniend.2010.02.007
  19. Suzuki, Y., Y. H. Hong, S. H. Song, A. Ardiyanti, D. Kato, K. H. So, K. Katoh, and S. G. Roh. 2012. The regulation of chemerin and CMKLR1 genes expression by TNF-$\alpha$, adiponectin, and chemerin analog in bovine differentiated adipocytes. Asian Australas. J. Anim. Sci. 25:1316-1321. https://doi.org/10.5713/ajas.2012.12083
  20. Suzuki, Y., S. H. Song, K. Sato, K. H. So, A. Ardiyanti, S. Kitayama, Y. H. Hong, S. D. Lee, K. C. Choi, A. Hagino, K. Katoh, and S. G. Roh. 2012. Chemerin analog regulates energy metabolism in sheep. Anim. Sci. J. 83:263-267. https://doi.org/10.1111/j.1740-0929.2011.01002.x
  21. Taniguchi, M., T. Utsugi, K. Oyama, H. Mannen, M. Kobayashi, Y. Tanabe, A. Ogino, and S. Tsuji. 2004. Genotype of stearoylcoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 15:142-148. https://doi.org/10.1007/s00335-003-2286-8
  22. Tian, W. Q., H. C. Wang, F. B. Song, L. S. Zan, H. Wang, H. B. Wang, Y. P. Xin, and J. A. Ujan. 2011. Association between a single nucleotide polymorphism in the bovine chemerin gene and carcass traits in Qinchuan cattle. Genet. Mol. Res. 10:2833-2840. https://doi.org/10.4238/2011.November.17.1
  23. Yang, A., T. W. Larsen, V. H. Powell, and R. K. Tume. 1999. A comparison of fat composition of Japanese and long-term grain-fed Australian steers. Meat Sci. 51:1-9. https://doi.org/10.1016/S0309-1740(98)00065-5
  24. Yang, H., F. Li, X. Kong, X. Yuan, W. Wang, R. Huang, T. Li, M. Geng, G. Wu, and Y. Yin. 2012. Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine 60:646-652. https://doi.org/10.1016/j.cyto.2012.07.033
  25. Yokota, S., H. Sugita, A. Ardiyanti, N. Shoji, H. Nakajima, M. Hosono, Y. Otomo, Y. Suda, K. Katoh, and K. Suzuki. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle. Anim. Genet. 43:790-792. https://doi.org/10.1111/j.1365-2052.2012.02331.x

Cited by

  1. - Invited Review - Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.16.0001R
  2. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05702-5
  3. Possible involvement of the RARRES2/CMKLR1-system in metabolic and reproductive parameters in Holstein dairy cows vol.17, pp.1, 2019, https://doi.org/10.1186/s12958-019-0467-x