DOI QR코드

DOI QR Code

A Study on the Reaction Pathway for Isomerization of Tetrahydrotricyclopentadiene Using Ionic Liquid Catalyst

이온성 액체 촉매를 이용한 Tetrahydrotricyclopentadiene의 이성화 반응 경로에 관한 연구

  • Kim, Dae Hyun (Division of Advanced material Engineering, Kongju National University) ;
  • Han, Jeong-Sik (Agency for Defense Development) ;
  • Jeon, Jong-Ki (Department of Chemical engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advanced material Engineering, Kongju National University)
  • Received : 2015.04.21
  • Accepted : 2015.04.29
  • Published : 2015.06.10

Abstract

The kinetic behavior of tetrahydrotricyclopentadiene (THTCPD) isomerization was studied by using two kinds of chloroaluminate ionic liquid (IL) catalyst with different Lewis acidity. THTCPD isomerization pathway was discussed under the different temperature and time as reaction parameters using IL catalysts consisting of 1-butyl-3-methylimidazolun chloride $(BMIC)/AlCl_3$ with low acidity and pyridine hydrochloride $(PHC)/AlCl_3$ with high acidity. The conversion of THTCPD isomerization increased with increasing Lewis acidity of IL catalyst. The THTCPD isomerization pathway changed as a function of reaction temperature and catalyst acidity. In the case of $BMIC/AlCl_3$ IL catalyst, THTCPD isomerization pathway was similar to that of using conventional $AlCl_3$ catalyst. However, two different types of additional pathways (endo, exo, endo-NB ${\rightarrow}$ exo, exo, endo-NB ${\rightarrow}$ exo, exo, exo-NB and endo, exo, endo-NB ${\rightarrow}$ exo, exo, endo-NB ${\rightarrow}$ exo, exo, exo-CP) were appeared when using $PHC/AlCl_3$ IL catalyst.

Keywords

High energy density fuels;Isomerization;Kinetic study;Tetrahydrotricyclopentadiene;Ionic liquid catalyst

Acknowledgement

Grant : 차세대 IT 융합 부품용 희소소재 인력양성팀

References

  1. H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
  2. T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. of PROP. & POW., 19, 1089-1107 (2003). https://doi.org/10.2514/2.6946
  3. L. Wang, X. Zhang, J.-J. Zou, H. Han, Y. Li, and L. Wang, Acid-Catalyzed Isomerization of Tetrahydrotricyclopentadiene: Synthesis of High-Energy-Density Liquid Fuel, Energy Fuels, 23, 2383-2388 (2009). https://doi.org/10.1021/ef801139h
  4. Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretacal and expermental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
  5. L. Wang, J.-J. Zou, X. Zhang, and L. Wang, Rearrangement of Tetrahydrotricyclopentadiene Using Acidic Ionic Liquid: Synthesis of Diamondoid Fuel, Energy Fuels, 25, 1342-1347 (2011). https://doi.org/10.1021/ef101702r
  6. G. W. Burdette and A. I. Schneider, Exo-tetrahydrotricyclopentadiene, a high density liquid fuel, US Patent 4,401,837 (1983).
  7. J. R. Boulton and R. A. Kremer, Oligomers of cyclopentadiene and process for making them, US Patent 5,446,222 (1995).
  8. Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005). https://doi.org/10.1007/s11144-005-0247-9
  9. J.-J. Zou, Z. Xiong, L. Wang, X. Zhang, and Z. Mi, Preparation of Pd-B/${\gamma}-Al_2O_3$ amorphous catalyst for the hydrogenation of tricyclopentadiene, J. Mol. Catal. A: Chemical, 271, 209-215 (2007). https://doi.org/10.1016/j.molcata.2007.03.005
  10. M.-Y. Huang, J.-C. Chang, J.-C. Lin, K.-H. Lin, and J.-C. Wu, Method for producing exo-tetrahydrodicyclopentadiene using ionic liquid catalyst, US Patent 7,488,862 (2009).
  11. M.-Y. Huang, J.-C. Wu, F.-S. Shieu, and J.-J. Lin, Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts, J. Mol. Catal. A: Chemical, 315, 69-75 (2010). https://doi.org/10.1016/j.molcata.2009.09.002
  12. V. I. Pavulescu and C. Hardacre, Catalysis in Ionic Liquids, Chem. Rev., 107, 2615-2665 (2007). https://doi.org/10.1021/cr050948h
  13. K. Yoo, V. V. Namboodiri, R. S. Varma, and P. G. Smirniotis, Ionic liquid-catalyzed alkylation of isobueane with 2-butene, J. Catal., 222, 511-519 (2004). https://doi.org/10.1016/j.jcat.2003.11.018
  14. C.-Z. Qial, Y.-F. Zhang, J.-C. Zhang, and C.-Y. Li, Activity and stability investigation of [BMIM][$AlCl_4$] ionic liquid as catalyst for alkylation of benzene with 1-dodecene, Appl. Catal. A: General., 276, 61-66 (2004). https://doi.org/10.1016/j.apcata.2004.07.021
  15. P. Wasserscheid and M. Eichmann, Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor, Catal. Today, 66, 309-316 (2001). https://doi.org/10.1016/S0920-5861(00)00617-9
  16. D. Thiele and R. F. de Souza, The role of aluminum species in biphasic butene dimerization catalyzed by nickel complexes, J. of Mol. Catal. A: Chemical, 264, 293-298 (2007). https://doi.org/10.1016/j.molcata.2006.09.026
  17. H. W. Bae, J.-S. Han, S. Jung, M. Cheong, H. S. Kim, and J. S. Lee, Polymer-supported chloroaluminate catalysts for the Diels-Alder reaction of cyclopentadiene with methyl methacrylate, Appl. Catal. A: General, 331, 34-38 (2007). https://doi.org/10.1016/j.apcata.2007.07.023
  18. S.-G. Kim, J. Han, J.-K. Jeon, and J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014). https://doi.org/10.1016/j.fuel.2014.07.066

Cited by

  1. A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1084
  2. Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1010