Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media

온도센서용 실리카에 담지된 ZnSe 양자점 소재

  • Lee, Ae Ri (Department of Chemical & Biological Engineering, Gachon Univ.) ;
  • Park, Sang Joon (Department of Chemical & Biological Engineering, Gachon Univ.)
  • 이애리 (가천대학교 화공생명공학과) ;
  • 박상준 (가천대학교 화공생명공학과)
  • Received : 2015.04.06
  • Accepted : 2015.05.06
  • Published : 2015.06.10


Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.


Supported by : GRRC


  1. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, High-efficiency light-emitting devices based on quantum dots with tailored nanostructures, Nat. Photonics, 9, 259-266 (2015).
  2. P. Chuang, C. C. Lin, and R. S. Liu, Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index, ACS Appl. Mater. Interfaces, 6, 15379-15387 (2014).
  3. M. Ahmed, A. Guleria, M. C. Rath, A. K. Singh, S. Adhikari, and S. K. Sarkar, Facile and Green Synthesis of CdSe Quantum Dots in Protein Matrix: Tuning of Morphology and Optical Properties, J. Nanosci. Nanotechnol., 14, 5730-5742 (2014).
  4. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, 298, 1759-1762 (2002).
  5. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol., 21, 47-51 (2003)
  6. L. Yang, R. S. Xie, L.Y. Liu, D. Q. Xiao, and J. G. Zhu, Synthesis and Characterization of ZnSe Nanocrystals by W/O Reverse Microemulsion Method: The Effect of Cosurfactant, J. Phys. Chem. C., 115, 19507-19512 (2011).
  7. H. S Kim, J. S. Kim, and S. J. Park, Preparation of ZnSe Nanocrystals Using Water-in-Oil Microemulsions, Jpn. J. Appl. Phys., 49, 06GJ08_1-06GJ08_4 (2010).
  8. Y. Yang, L. Jing, X. Yu, D. Yan, and M. Gao, Coating Aqueous Quantum Dots with Silica via Reverse Microemulsion Method: Toward Size-Controllable and Robust Fluorescent Nanoparticles, Chem. Mater., 19, 4123-4128 (2007).
  9. M. Darbandi, R. Thomann, and T. Nann, Single Quantum Dots in Silica Spheres by Microemulsion Synthesis, Chem. Mater., 17, 5720-5725 (2005).
  10. W. L. Wilson, P. F. Szajowski, and L. E. Brus, Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals, Science, 262, 1242-1244 (1993).
  11. P. Mulvaney, L. M. Liz-Marza'n, M. Giersig, and T. Ung, Silica encapsulation of quantum dots and metal clusters, J. Mater. Chem., 10, 1259-1270 (2000).
  12. T. Selvan, C. Li, M. Ando, and N. Murase, Formation of luminescent CdTe-silica nanoparticles through an inverse microemulsion technique, Chem. Lett., 33, 434-435 (2004).
  13. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968).
  14. Y. Wang, S. H. Niu, Z. J. Zhang, H. T. Wang, C. W. Yuan, and D.G. Fu, Silica Coating of Water-Soluble CdTe/CdS Core-Shell Nanocrystals by Microemulsion Method, Chin. J. Chem. Phys., 20, 685-689 (2007).
  15. K. Liu, J. H. Kim, and S. J. Park, Optical Properties of Silica-Encapsulated ZnSe Nanocrystals Prepared with Water-in-Oil Microemulsions, Jpn. J. Appl. Phys., 52, 01AN01_1-01AN01_5 (2013).
  16. A. Lee, J. H. Kim, I. S. Yoo, and S. J. Park, Encapsulated of ZnSe Quantum Dots within Silica by Water-in-Oil Microemulsions, Appl. Chem. Eng., 22, 328-331 (2011).
  17. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, Quantum-dot optical temperature probes, Appl. Phys. Lett., 83, 3555-3557 (2003).
  18. J. W. Liu, Y. Zhang, C. W. Ge, Y. L. Jin, S. L. Hu, and N. Gu, Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots, Chin. Chem. Lett., 20, 977-980 (2009).
  19. T. C. Liu, Z. L. Huang, and Q.M. Luo, Characterization of the coupling of quantum dots and immunoglobulin antibodies, Anal. Chim. Acta, 559, 120-123 (2006).
  20. M. Vibin, R. Vinayakan, A. John, F. B. Fernandez and A. Abraham, Effective cellular internalization of silica-coated CdSe quantum dots for high contrast cancer imaging and labelling applications, Cancer Nano., 5, 1-12 (2014).