가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation

  • Lee, Hyun Jung (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineening, Pukyong National University) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
  • 투고 : 2015.04.02
  • 심사 : 2015.05.01
  • 발행 : 2015.06.10


$Cd_{0.5}Zn_{0.5}S/ZnO$ 형태의 복합체 광촉매를 침전법으로 제조하였고, 이들 화합물의 특성을 XRD, UV-vis DRS, PL 및 FE-SEM 등을 이용하여 조사하였다. 그리고 가시광선 조사 하에서의 로다민 B 분해반응에 대한 광촉매로서의 활성을 조사하였다. ZnO와는 달리 $Cd_{0.5}Zn_{0.5}S/ZnO$는 자외선 뿐만 아니라 가시광선 영역의 빛도 효율적으로 흡수하며 특히 $Cd_{0.5}Zn_{0.5}S$의 함량 증가에 따라 가시광선 영역의 빛에 대한 흡광도도 증가하였다. 또한 $Cd_{0.5}Zn_{0.5}S/ZnO$에 있어서 $Cd_{0.5}Zn_{0.5}S$의 함량이 증가할수록 최종 입자들의 크기가 작아지고 그 결과 비 표면적이 증가하였다. 로다민 B의 광분해 반응에 있어서는 $Cd_{0.5}Zn_{0.5}S$ 함량이 높은 $Cd_{0.5}Zn_{0.5}S/ZnO$ 촉매일수록 상대적으로 높은 광촉매 활성을 보여주었다. 그러므로 $Cd_{0.5}Zn_{0.5}S/ZnO$ 광촉매의 활성에 있어서는 촉매의 흡착능력 뿐만 아니라 $Cd_{0.5}Zn_{0.5}S$와 ZnO 사이의 heterojunction 효과도 중요하게 작용하는 것으로 보인다.


연구 과제 주관 기관 : 부경대학교


  1. Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Comp., 609, 46-53 (2014).
  2. Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang, Enhanced phtocatalytic hydrogen-production performance of graphene-$Zn_xCd_{1-x}S$ composites by using an organic S source, Chem. Eur. J., 20, 1176-1185 (2014).
  3. X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ ans $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010).
  4. W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem., 112, 16754-16758 (2008).
  5. A. Deshpande, P. Shah, R. S. Gholap, and N. M. Gupta, Interfacial and physico-chemical properties of polymer-supported CdS${\cdot}$ZnS nanocomposites and their role in the viisble-light mediated photocatalytic splitting of water, J. Colloid Interface Sci., 333, 263-268 (2009).
  6. D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, and S. Yuan, Novel $Zn_{0.8}Cd_{0.2}S$/g-$C_SN4$ heterojunctions with superior visible- light photocatalytic activity: Hydrothermal synthesis and mechanism study, J. Mol. Catal. A: Chem., 395, 261-268 (2014).
  7. K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010).
  8. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater., 13, 113-116 (2001).<113::AID-ADMA113>3.0.CO;2-H
  9. Y. Li, M. Ye, C. Yang, X. Li, and Y. Li, Composition- and shape-controlled synthesis and optical properties of $Zn_xCd_{1-x}S$ alloyed nanoparticles, Adv. Funct. Mater., 15, 433-441 (2005).
  10. S. K. Kulkarni, U. Winkler, N. Deshmukh, P. H. Borse, R. Funk, and E. Umbach, Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles, Appl. Surf. Sci., 169-170, 438-446 (2001).
  11. H. S. Lee, N. J. Kim, and C. H. Yoon, A study on the removla of COD and color to wastewater using plasma generator, J. Korean Oil Chemist's Soc., 23, 273-279 (2006).
  12. A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I., Dyes and Pigments, 73, 390-393 (2007).
  13. X. Z. Li, F. B. LI, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_x-TiO_2$ under visible light irradiation, J. Photochem Photobio. A, 141, 209-217 (2001).
  14. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using $TiO_2$ for hydrogen production, Renew. Sustain. Energy Rev., 11, 401-425 (2007).
  15. N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S$/NiS hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013).
  16. S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M., and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S$@ZnO core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012).
  17. X. Wang, H. Tian, W. Zheng, and Y. Liu, Visible photocatalytic activity enhancement of $Zn_{0.8}C_{1-x0.2}S$ by hybridization of reduced graphene oxide, Mater. Lett., 109, 100-103 (2013).
  18. X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014).
  19. W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011).
  20. R. A. McBride, J. M. Kelly, and D. E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts, J. Mater. Chem., 13, 1196-1201 (2003).
  21. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS catal. 3, 882-889 (2013).
  22. S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013-1098 (2011).
  23. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009).
  24. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and $TiO_2$, Sol. Energy Mater. Sol. Cells, 77, 65-82 (2003).
  25. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, Strategies of making $TiO_2$ and ZnO visible light active, J. Hazard. Mater., 170, 560-569 (2009).
  26. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, and Y. Ait-Ichou, Factors influencing the photocatalytic degradation of Rhodamine B by $TiO_2$-coated non-woven paper, J. Photochem. Photobiol. A: Chem., 195, 346-351 (2008).
  27. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012).
  28. Q. Wang, C. Chen, D. Zhao, W. Ma, and J. Zhao, Change of adsorption modes of dyes on fluorinated $TiO_2$ and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir, 24, 7338-7345 (2008).
  29. S. C. Yan, Z. S. Li, and Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-$C_3N_4$ under visible light irradiation, Langmuir, 26, 3894-3901 (2010).
  30. J. Low, J. Yu, Q, Li, and B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified $Bi_2WO_6$ nanosheets, Phys. Chem. Chem. Phys., 16, 1111-1120 (2014).
  31. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradation, Appl. Surf. Sci., 271, 171-181 (2013).