DOI QR코드

DOI QR Code

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation

가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응

  • Lee, Hyun Jung (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineening, Pukyong National University) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2015.04.02
  • Accepted : 2015.05.01
  • Published : 2015.06.10

Abstract

$Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.

Keywords

cadmum zinc sulfide;zinc oxide;composite;photocatalyst;visible light

Acknowledgement

Supported by : 부경대학교

References

  1. Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Comp., 609, 46-53 (2014). https://doi.org/10.1016/j.jallcom.2014.04.143
  2. Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang, Enhanced phtocatalytic hydrogen-production performance of graphene-$Zn_xCd_{1-x}S$ composites by using an organic S source, Chem. Eur. J., 20, 1176-1185 (2014). https://doi.org/10.1002/chem.201303446
  3. X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ ans $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010). https://doi.org/10.1557/JMR.2010.0018
  4. W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem., 112, 16754-16758 (2008).
  5. A. Deshpande, P. Shah, R. S. Gholap, and N. M. Gupta, Interfacial and physico-chemical properties of polymer-supported CdS${\cdot}$ZnS nanocomposites and their role in the viisble-light mediated photocatalytic splitting of water, J. Colloid Interface Sci., 333, 263-268 (2009). https://doi.org/10.1016/j.jcis.2009.01.037
  6. D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, and S. Yuan, Novel $Zn_{0.8}Cd_{0.2}S$/g-$C_SN4$ heterojunctions with superior visible- light photocatalytic activity: Hydrothermal synthesis and mechanism study, J. Mol. Catal. A: Chem., 395, 261-268 (2014). https://doi.org/10.1016/j.molcata.2014.08.036
  7. K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.143
  8. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater., 13, 113-116 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  9. Y. Li, M. Ye, C. Yang, X. Li, and Y. Li, Composition- and shape-controlled synthesis and optical properties of $Zn_xCd_{1-x}S$ alloyed nanoparticles, Adv. Funct. Mater., 15, 433-441 (2005). https://doi.org/10.1002/adfm.200400320
  10. S. K. Kulkarni, U. Winkler, N. Deshmukh, P. H. Borse, R. Funk, and E. Umbach, Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles, Appl. Surf. Sci., 169-170, 438-446 (2001). https://doi.org/10.1016/S0169-4332(00)00700-5
  11. H. S. Lee, N. J. Kim, and C. H. Yoon, A study on the removla of COD and color to wastewater using plasma generator, J. Korean Oil Chemist's Soc., 23, 273-279 (2006).
  12. A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I., Dyes and Pigments, 73, 390-393 (2007). https://doi.org/10.1016/j.dyepig.2006.01.007
  13. X. Z. Li, F. B. LI, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_x-TiO_2$ under visible light irradiation, J. Photochem Photobio. A, 141, 209-217 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  14. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using $TiO_2$ for hydrogen production, Renew. Sustain. Energy Rev., 11, 401-425 (2007). https://doi.org/10.1016/j.rser.2005.01.009
  15. N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S$/NiS hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.067
  16. S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M., and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S$@ZnO core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624
  17. X. Wang, H. Tian, W. Zheng, and Y. Liu, Visible photocatalytic activity enhancement of $Zn_{0.8}C_{1-x0.2}S$ by hybridization of reduced graphene oxide, Mater. Lett., 109, 100-103 (2013). https://doi.org/10.1016/j.matlet.2013.07.065
  18. X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014). https://doi.org/10.1039/C4DT01094A
  19. W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011). https://doi.org/10.1021/es103041f
  20. R. A. McBride, J. M. Kelly, and D. E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts, J. Mater. Chem., 13, 1196-1201 (2003). https://doi.org/10.1039/b211723c
  21. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS catal. 3, 882-889 (2013). https://doi.org/10.1021/cs4000975
  22. S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013-1098 (2011). https://doi.org/10.1007/s12274-011-0160-7
  23. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e
  24. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and $TiO_2$, Sol. Energy Mater. Sol. Cells, 77, 65-82 (2003). https://doi.org/10.1016/S0927-0248(02)00255-6
  25. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, Strategies of making $TiO_2$ and ZnO visible light active, J. Hazard. Mater., 170, 560-569 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.064
  26. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, and Y. Ait-Ichou, Factors influencing the photocatalytic degradation of Rhodamine B by $TiO_2$-coated non-woven paper, J. Photochem. Photobiol. A: Chem., 195, 346-351 (2008). https://doi.org/10.1016/j.jphotochem.2007.10.022
  27. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012). https://doi.org/10.1039/c2jm14410g
  28. Q. Wang, C. Chen, D. Zhao, W. Ma, and J. Zhao, Change of adsorption modes of dyes on fluorinated $TiO_2$ and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir, 24, 7338-7345 (2008). https://doi.org/10.1021/la800313s
  29. S. C. Yan, Z. S. Li, and Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-$C_3N_4$ under visible light irradiation, Langmuir, 26, 3894-3901 (2010). https://doi.org/10.1021/la904023j
  30. J. Low, J. Yu, Q, Li, and B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified $Bi_2WO_6$ nanosheets, Phys. Chem. Chem. Phys., 16, 1111-1120 (2014). https://doi.org/10.1039/C3CP53820F
  31. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradation, Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156