Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation

가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응

  • Lee, Hyun Jung (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineening, Pukyong National University) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2015.04.02
  • Accepted : 2015.05.01
  • Published : 2015.06.10


$Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.


cadmum zinc sulfide;zinc oxide;composite;photocatalyst;visible light


Supported by : 부경대학교


  1. Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Comp., 609, 46-53 (2014).
  2. Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang, Enhanced phtocatalytic hydrogen-production performance of graphene-$Zn_xCd_{1-x}S$ composites by using an organic S source, Chem. Eur. J., 20, 1176-1185 (2014).
  3. X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ ans $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010).
  4. W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem., 112, 16754-16758 (2008).
  5. A. Deshpande, P. Shah, R. S. Gholap, and N. M. Gupta, Interfacial and physico-chemical properties of polymer-supported CdS${\cdot}$ZnS nanocomposites and their role in the viisble-light mediated photocatalytic splitting of water, J. Colloid Interface Sci., 333, 263-268 (2009).
  6. D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, and S. Yuan, Novel $Zn_{0.8}Cd_{0.2}S$/g-$C_SN4$ heterojunctions with superior visible- light photocatalytic activity: Hydrothermal synthesis and mechanism study, J. Mol. Catal. A: Chem., 395, 261-268 (2014).
  7. K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010).
  8. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater., 13, 113-116 (2001).<113::AID-ADMA113>3.0.CO;2-H
  9. Y. Li, M. Ye, C. Yang, X. Li, and Y. Li, Composition- and shape-controlled synthesis and optical properties of $Zn_xCd_{1-x}S$ alloyed nanoparticles, Adv. Funct. Mater., 15, 433-441 (2005).
  10. S. K. Kulkarni, U. Winkler, N. Deshmukh, P. H. Borse, R. Funk, and E. Umbach, Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles, Appl. Surf. Sci., 169-170, 438-446 (2001).
  11. H. S. Lee, N. J. Kim, and C. H. Yoon, A study on the removla of COD and color to wastewater using plasma generator, J. Korean Oil Chemist's Soc., 23, 273-279 (2006).
  12. A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I., Dyes and Pigments, 73, 390-393 (2007).
  13. X. Z. Li, F. B. LI, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_x-TiO_2$ under visible light irradiation, J. Photochem Photobio. A, 141, 209-217 (2001).
  14. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using $TiO_2$ for hydrogen production, Renew. Sustain. Energy Rev., 11, 401-425 (2007).
  15. N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S$/NiS hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013).
  16. S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M., and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S$@ZnO core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012).
  17. X. Wang, H. Tian, W. Zheng, and Y. Liu, Visible photocatalytic activity enhancement of $Zn_{0.8}C_{1-x0.2}S$ by hybridization of reduced graphene oxide, Mater. Lett., 109, 100-103 (2013).
  18. X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014).
  19. W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011).
  20. R. A. McBride, J. M. Kelly, and D. E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts, J. Mater. Chem., 13, 1196-1201 (2003).
  21. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS catal. 3, 882-889 (2013).
  22. S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013-1098 (2011).
  23. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009).
  24. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and $TiO_2$, Sol. Energy Mater. Sol. Cells, 77, 65-82 (2003).
  25. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, Strategies of making $TiO_2$ and ZnO visible light active, J. Hazard. Mater., 170, 560-569 (2009).
  26. N. Barka, S. Qourzal, A. Assabbane, A. Nounah, and Y. Ait-Ichou, Factors influencing the photocatalytic degradation of Rhodamine B by $TiO_2$-coated non-woven paper, J. Photochem. Photobiol. A: Chem., 195, 346-351 (2008).
  27. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012).
  28. Q. Wang, C. Chen, D. Zhao, W. Ma, and J. Zhao, Change of adsorption modes of dyes on fluorinated $TiO_2$ and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir, 24, 7338-7345 (2008).
  29. S. C. Yan, Z. S. Li, and Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-$C_3N_4$ under visible light irradiation, Langmuir, 26, 3894-3901 (2010).
  30. J. Low, J. Yu, Q, Li, and B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified $Bi_2WO_6$ nanosheets, Phys. Chem. Chem. Phys., 16, 1111-1120 (2014).
  31. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradation, Appl. Surf. Sci., 271, 171-181 (2013).