DOI QR코드

DOI QR Code

상온 이온성액체를 이용한 호기성 벤질 알코올 산화반응용 Pd/TiO2 촉매 제조

Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation

  • 조태준 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Cho, Tae Jun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 투고 : 2015.04.01
  • 심사 : 2015.04.21
  • 발행 : 2015.06.10

초록

호기성 벤질 알코올 산화반응을 위하여 팔라듐이 담지된 이산화티타늄 촉매를 제조하였다. 반응점으로 사용되는 팔라듐 입자의 특성을 조절하기 위하여 8종류의 상온 이온성액체를 촉매 합성 시 사용하였다. 최적의 촉매특성을 규명하기 위하여 300, $400^{\circ}C$$500^{\circ}C$로 소성하여 반응을 수행하였다. 소성온도가 증가할수록 비표면적과 기공부피가 감소 하였지만, 기공크기는 커다란 변화가 없었다. 그러나 사용한 이온성액체의 종류에 따라 촉매의 물리적 특성은 다르게 나타났다. 동일한 반응조건에서 사용한 이온성액체와 소성온도에 따라 촉매의 반응활성에 차이를 보였다. 대부분의 경우 $400^{\circ}C$에서 소성한 촉매가 우수한 반응활성을 보였다. 하지만 1-Octyl-3-methylimidazolium hexafluorophosphate 와 1-Octyl-3-methylimidazolium trifluoromethanesulfonate를 이용하여 제조한 촉매의 경우 $300^{\circ}C$에서 소성한 경우 반응활성이 우수하였다. 본 실험에서 사용한 촉매들 중에서 1-Octyl-3-methylimidazolium tetrafluoroborate를 사용하고 $400^{\circ}C$에서 소성한 촉매가 가장 우수한 반응활성을 보였다.

키워드

$Pd/TiO_2$;aerobic benzyl alcohol oxidation;room temperature ionic liquids

과제정보

연구 과제 주관 기관 : 서울과학기술대학교

참고문헌

  1. R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980). https://doi.org/10.1021/jo01298a066
  2. J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961). https://doi.org/10.1021/jo01070a009
  3. D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970). https://doi.org/10.1021/jo00835a101
  4. R. J. Highet and W. C. Wildman, Solid manganese dioxide as an oxidizing agent, J. Am. Chem. Soc., 77, 4399-4401 (1955). https://doi.org/10.1021/ja01621a062
  5. F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981). https://doi.org/10.1016/S0040-4039(01)90402-2
  6. G. J. Hutchings, Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis, Chem. Commun., 1148-1164 (2008).
  7. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
  8. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). https://doi.org/10.1002/anie.200500382
  9. A. Arcadi and S. Di Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004). https://doi.org/10.2174/1385272043370564
  10. P. Vonmatt and A. Pfaltz, Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd-catalyzed allylic substitution, Angew. Chem. Int. Ed., 32, 566-568(1993). https://doi.org/10.1002/anie.199305661
  11. D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005). https://doi.org/10.1002/anie.200500766
  12. R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). https://doi.org/10.1021/nl0495256
  13. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 6, 692-697 (2007). https://doi.org/10.1038/nmat1957
  14. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7, 3097-3101 (2007). https://doi.org/10.1021/nl0716000
  15. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen, Angew. Chem, Int. Ed., 47, 3588-3591 (2008). https://doi.org/10.1002/anie.200800073
  16. W. Fang, J. Chen, Q. Zhang, W. Deng, and Y. Wang, Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects, Chem. Eur. J., 17, 1247-1256 (2011). https://doi.org/10.1002/chem.201002469
  17. N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Norskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal., 223, 232-235 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
  18. T. V. W. Janssens, B. S. Clausen, B. Hvolbaek, H. Falsig, C. H. Christensen, T. Bligaard, and J. K. Norskov, Insights into the reactivity of supported Au nanoparticles: combining theory and experiments, Top. Catal., 44, 15-26 (2007). https://doi.org/10.1007/s11244-007-0335-3
  19. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, Size dependent chemistry: Properties of nanocrystals, Chem. Eur. J., 8, 29-35 (2002).
  20. E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583-592 (2006). https://doi.org/10.1039/b502142c
  21. P. Wasserscheid and W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773-3789 (2000).
  22. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2083 (1999). https://doi.org/10.1021/cr980032t
  23. T. J. Cho and K. S. Yoo, Synthesis of $Pd/TiO_2$ catalyst for aerobic benzyl alcohol dxidation, App. Chem. Eng., 25, 281-285 (2014). https://doi.org/10.14478/ace.2014.1028