DOI QR코드

DOI QR Code

Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by Bar Coating

바코팅에 의해 제조된 그래핀 옥사이드 필름의 전기적 특성에 미치는 아민 화합물의 영향

  • Received : 2015.03.10
  • Accepted : 2015.04.08
  • Published : 2015.06.10

Abstract

We prepared films by a bar-coating of various graphene oxide (GO) pastes by varying pH with amine compounds. The thermal treatment of films at $150^{\circ}C$ and measurement of surface resistances exhibited that the pH variation does not significantly affect the surface resistance. We, however, found that the addition of amines reduced the surface resistance by approximately 10 times and N,N-dimethylethanolamine (DMEA) showed the most significant effect among all amines investigated. XPS studies demonstrated that the addition of DMEA accelerated the reduction reaction of GO, and finally enhanced the electrical properties of GO films.

Keywords

graphene oxide;film;bar-coating;amine;reduction

Acknowledgement

Supported by : 한국산업기술평가관리원(KEIT)

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  3. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  5. V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating, Carbon, 48, 1945-1951 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
  6. J. Wang, M. H. Liang, Y. Fang, T. F. Qiu, J. Zhang, and L. J. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 24, 2874-2878 (2012). https://doi.org/10.1002/adma.201200055
  7. J. Ning, J. Wang, X. L. Li, T. F. Qiu, B. Luo, L. Hao, M. H. Liang, B. Wangab, and L. J. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. A, 2, 10969-10973 (2014). https://doi.org/10.1039/c4ta00527a
  8. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463-470 (2008). https://doi.org/10.1021/nn700375n
  9. X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang, and H. J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3, 538-542 (2008). https://doi.org/10.1038/nnano.2008.210
  10. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
  11. S. Y. Jeong, S. H. Kim, J. T. Han, H. J. Jeong, S. Y. Jeong, and G. W. Lee, Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent Cation-${\pi}$ Interaction Toward Printed Electronics, Adv. Funct. Mater., 22, 3307-3314 (2012). https://doi.org/10.1002/adfm.201200242
  12. C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions, Nanoscle, 4, 3977-3982 (2012). https://doi.org/10.1039/c2nr30605k
  13. P. Jomsurang and D. Sakamon, Evaluation of the effects of some additives and pH on surface tension of aqueous solutions using a drop-weight method, J. Food Eng., 70, 219-226 (2005). https://doi.org/10.1016/j.jfoodeng.2004.08.045
  14. L. M. Yates and R. von Wandruszka, Effects of pH and metals on the surface tension of aqueous humic materials, Soil Sci. Am. J., 63, 1645-1649 (1999). https://doi.org/10.2136/sssaj1999.6361645x
  15. H. Bai, C. Li, and G. Q. Shi, Functional composite material based on chemically converted graphene, Adv. Mater., 23, 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
  16. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  17. N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015). https://doi.org/10.14478/ace.2014.1127
  18. N. Pan, D. Guan, Y. Yang, Z. Huang, R. Wang, Y. Jin, and C. Xia, A rapid low-temperature synthetic method leading to large-scale carboxyl graphene, Chem. Eng. J., 236, 471-479 (2014). https://doi.org/10.1016/j.cej.2013.10.060
  19. C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev., 43, 291-312 (2014). https://doi.org/10.1039/C3CS60303B

Cited by

  1. Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1119
  2. Study on the Thermal Stability of PEDOT/PSS Film Hybrided with Graphene Oxide vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1050