DOI QR코드

DOI QR Code

분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis

  • 정경열 (공주대학교 화학공학부) ;
  • 박재훈 (공주대학교 화학공학부) ;
  • 송신애 (한국생산기술연구원 마이크로제조시스템기술센터)
  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Park, Jea Hoon (Department of Chemical Engineering, Kongju National University) ;
  • Song, Shin Ae (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 투고 : 2015.03.06
  • 심사 : 2015.04.10
  • 발행 : 2015.06.10

초록

분무열분해법을 이용하여 서브 미크론 크기의 $CeO_2:Er^{3+}/Yb^{3+}$ 상향 변환 형광체 입자를 합성하고 $Er^{3+}$$Yb^{3+}$ 농도 변화에 따른 발광특성을 조사하였다. 합성한 $CeO_2:Er^{3+}/Yb^{3+}$$Er^{3+}$ 활성이온의 $^4S_{3/2}/^2H_{11/2}{\rightarrow}^4I_{15/2}$$^4F_{9/2}{\rightarrow}^4I_{15/2}$ 전이에 기인한 강한 녹색 및 적색 발광을 보였다. 가장 높은 발광을 보이는 활성제 농도는 Er = 1.0% 그리고 Yb = 2.0%이며, 농도소광 현상은 쌍극자-쌍극자 상호작용을 통해 일어남이 확인되었다. 레이저 다이오드 여기 광 세기에 대한 발광강도 의존성을 활성이온 농도에 따라 조사하였고, 발광 중간 에너지 레벨의 주 소멸과정을 고려하여 발광 메커니즘을 조사하였다. $Yb^{3+}$에서 $Er^{3+}$으로 에너지 전달은 바닥 상태 흡수(ground state absorption, GSA)에 기여하고, $Yb^{3+}$ 도핑은 $^4I_{11/2}{\rightarrow}^4I_{13/2}$ 전이를 가속화시켜 적색/녹색 발광세기 비를 상승시킨다. 최종적으로 분무열분해법으로 제조된 $CeO_2:Er^{3+}/Yb^{3+}$ 형광체의 발광은 선형 감쇠가 중간 에너지 레벨의 고갈을 지배하는 2 광자 프로세스에 의해 일어남을 확인하였다.

과제정보

연구 과제번호 : 고성능/고신뢰성 반도체 검사용 PCB제조공정 최적화 (2/3)

참고문헌

  1. Q. Li, W. Feng, and F. Li, Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo, Coord. Chem. Rev., 273-274, 100-110 (2014). https://doi.org/10.1016/j.ccr.2014.01.004
  2. T. R. Hinklin, S. C. Rand, and R. M. Laine, Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3-D Displays, Adv. Mater., 20, 1270-1273 (2008). https://doi.org/10.1002/adma.200701235
  3. J. M. Meruga, A. Baride, W. Cross, J. J. Keller, and P. S. May, Red-green-blue printing using luminescence-upconversion inks, J. Mater. Chem. C, 2, 2221-2227 (2014).
  4. E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang, Tunable white upconversion luminescence from $Yb^{3+}-Tm^{3+}-Mn^{2+}$ tri-doped perovskite nanocrystals, Opt. Mater. Express, 4, 1186-1196 (2014). https://doi.org/10.1364/OME.4.001186
  5. M. J. Lim, Y. N. Ko, Y. C. Kang, and K. Y. Jung, Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming $TiO_2$ composite double layers with dwon/up converting phosphor dispersion, RSC Adv., 4, 10039-10042 (2014). https://doi.org/10.1039/c3ra47310d
  6. M. He, P. Huang, C. Zhang, J. Ma, R. He, and D. Cui, Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system, Chem. Eur. J., 18, 5954-5969 (2012). https://doi.org/10.1002/chem.201102419
  7. M. Ding, D. Chen, T. Chen, C. Lu, Y. Ni, and Z. Xu, Hydrothermal synthesis and upconversion luminescence properties of BaFCl:$Yb^{3+}/Er^{3+}$ microhseets, Mater. Lett., 128, 101-104 (2014). https://doi.org/10.1016/j.matlet.2014.04.111
  8. Y. Song, Y. Huang, L. Zhang, Y. Zheng, N. Guo, and H. You, $Gd_2O_2S$:Yb,Er submicrospheres with multicolor upconversion fluorescence, RSC Adv., 2, 4777-4781 (2012). https://doi.org/10.1039/c2ra00009a
  9. F. Vetrone, J.-C. Boyer, J. A. Capobianoco, A. Speghini, and M. Bettinelli, Concentration-dependent near-infrared to visible upconversion in nanoscrystalline and bulk $Y_2O_3$:$Er^{3+}$, Chem. Mater., 15, 2737-2743 (2013).
  10. J.-H. Zeng, J. Su, Z.-H. Li, R.-X. Yan, and Y.-D. Li, Synthesis and upconversion luminescence of hexagonal-phase $NaYF_4$:Yb,$Er^{3+}$ phosphors of controlled size and morphology, Adv. Mater., 17, 2119-2123 (2005). https://doi.org/10.1002/adma.200402046
  11. C. Mi, Z. Tian, C. Cao, Z. Wang, C. Mao, and S. Xu, Novel microwave-assisted solvothermal synthesis of $NaYF_4$:Yb,Er upconversion nanoparticles and their application in cancer cell imaging, Langmuir, 27, 14632-14637 (2011). https://doi.org/10.1021/la204015m
  12. J. Zhao, Z. Lu, Y. Yin, C. Mcrae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, Upconversion luminescence with tunable lifetime in $NaYF_4$:Yb,Er nanocrystals: role of nanocrystal size, Nanoscale, 5, 944-952 (2013). https://doi.org/10.1039/C2NR32482B
  13. M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
  14. X. Liu, X. Zhang, G. Tian, W. Yin, L. Yan, L. Ruan, Z. Yang, D. Xiao, and Z. Gu, A simple and efficient synthesis route for preparation of $NaYF_4$ upconversion nanoparticles by thermo-decomposition of rare-earth oleates, Cryst. Eng. Comm., 16, 5650-5661 (2014). https://doi.org/10.1039/c4ce00231h
  15. Q. Xiao, G. Dong, and J. Qiu, Synthesis and up-conversion luminescence of $Yb^{3+}$/$Ln^{3+}$ (Ln = Er, Tm, Ho) co-doped strontium cerate by Pechini method, J. Am. Ceram. Soc., 97, 1899-1904 (2014). https://doi.org/10.1111/jace.12865
  16. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, Effect of $Yb^{3+}$ codoping on the upconversion emission in nanocrystalline $Y_2O_3$:$Er^{3+}$, J. Phys. Chem. B, 107, 1107-1112 (2003). https://doi.org/10.1021/jp0218692
  17. D. Matsuura, H. Hattori, and A. Takano, Upconversion luminescence properties of $Y_2O_3$ nanocrystals doped with trivalent rare-earth ions, J. Electrochem. Soc., 152, H39-H42 (2005).
  18. Y. Dwivedi, A. Bahadur, and S. B. Rai, Optical avalanche in Ho:Yb:$Gd_2O_3$ nanocrystals, J. Appl. Phys., 110, 043103-043103 (2011). https://doi.org/10.1063/1.3622624
  19. V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, NIR to visible frequency upconversion in $Er^{3+}$ and $Yb^{3+}$ codoped $ZrO_2$ phosphor, Appl. Phys. A, 113, 747-753 (2013). https://doi.org/10.1007/s00339-013-7583-9
  20. K. Zheng, W. Song, C. Lv, Z. Liu, and W. Qin, Controllable synthesis and size-dependent upconversion luminescence properties of $Lu_2O_3$:$Yb^{3+}/Er^{3+}$ nanospheres, Cryst. Eng. Comm., 16, 4329-4337 (2014). https://doi.org/10.1039/c4ce00036f
  21. J. Yang and J. Lin, Sol-gel synthesis of nanocrystalline $Yb^{3+}$/$Ho^{3+}$-doped $Lu_2O_3$ as an efficient green phosphor, J. Electrochem. Soc., 157, K273-K278 (2010). https://doi.org/10.1149/1.3496669
  22. Z. Xu, Q. Zhao, Y. Sun, B. Ren, L. You, S. Wang, and F. Ding, Synthesis of hollow $La_2O_3$:$Yb^{3+}/Er^{3+}$ microspheres with tunable up-conversion luminescence properties, RSC Adv., 3, 8407-8416 (2013). https://doi.org/10.1039/c3ra40414e
  23. X. Liu, S. Chen, and X. Wang, Synthesis and photoluminescence of $CeO_2$:$Eu^{3+}$ phosphor powder, J. Lumin., 127, 650-654 (2007). https://doi.org/10.1016/j.jlumin.2007.03.014
  24. J.-H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, Up conversion luminescence of $Yb_{3+}$-$Er_{3+}$ codoped $CeO_2$ nanocrystals with imaging applications, J. Lumin., 132, 743-749 (2012). https://doi.org/10.1016/j.jlumin.2011.11.011
  25. Z. Wang, F. Gu, Z. Wang, and D. Han, Solvothermal synthesis of $CeO_2$:Er/Yb nanorods and upconversion luminescence characterization, Mater. Res. Bull., 53, 141-144 (2014). https://doi.org/10.1016/j.materresbull.2014.02.003
  26. K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, Luminescent properties of (Ba,Sr)$MgAl_{10}O_{17}$:Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation, Chem. Mater., 17, 2729-2734 (2005). https://doi.org/10.1021/cm050074f
  27. M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, Luminescence Characteristics of $Y_3Al_{5-2y}(Mg,Si)_yO_{12}$:Ce phosphor prepared by spray pyrolysis, J. Electrochem. Soc., 157, H1135-H1139 (2010). https://doi.org/10.1149/1.3503569
  28. J. H. Kim and K. Y. Jung, Luminescence characteristics and optimization of (La,Gd)$Sr_2(A,B)O_5$:Ce phosphor for white light emitting diodes, J. Lumin., 132, 1376-1381 (2012). https://doi.org/10.1016/j.jlumin.2012.01.029
  29. W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, J. Kim, and S. H. Kim, Spray pyrolysis synthesis of $MAl_2O_4$:$Eu^{2+}$ (M=Ba, Sr) phosphor for UV LED excitation, J. Cryst. Growth, 326, 73-76 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.055
  30. J. H. Kim and K. Y. Jung, Preparation and luminescence characterization of fine-sized $LaSr_2AlO_5$:Ce phosphor prepared by spray pyrolysis, J. Lumin., 131, 1487-1491 (2011). https://doi.org/10.1016/j.jlumin.2011.03.054
  31. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 31, 836-850 (1953).
  32. S. H. M. Poort, W. P. Blocpoel, and G. Blasse, Luminescence of $Eu^{2+}$ in barium and strontium aluminate and gallate, Chem. Mater., 7, 1547-1551 (1995). https://doi.org/10.1021/cm00056a022
  33. Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, Upconversion luminescence, intensity saturation effect, and thermal effect in $Gd_2O_3$:$Er^{3+}$,$Yb^{3+}$ nanowire, J. Chem. Phys., 123, 174710 (2005). https://doi.org/10.1063/1.2087487