Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis

분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화

  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Park, Jea Hoon (Department of Chemical Engineering, Kongju National University) ;
  • Song, Shin Ae (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 정경열 (공주대학교 화학공학부) ;
  • 박재훈 (공주대학교 화학공학부) ;
  • 송신애 (한국생산기술연구원 마이크로제조시스템기술센터)
  • Received : 2015.03.06
  • Accepted : 2015.04.10
  • Published : 2015.06.10


Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.


Grant : 고성능/고신뢰성 반도체 검사용 PCB제조공정 최적화 (2/3)


  1. Q. Li, W. Feng, and F. Li, Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo, Coord. Chem. Rev., 273-274, 100-110 (2014).
  2. T. R. Hinklin, S. C. Rand, and R. M. Laine, Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3-D Displays, Adv. Mater., 20, 1270-1273 (2008).
  3. J. M. Meruga, A. Baride, W. Cross, J. J. Keller, and P. S. May, Red-green-blue printing using luminescence-upconversion inks, J. Mater. Chem. C, 2, 2221-2227 (2014).
  4. E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang, Tunable white upconversion luminescence from $Yb^{3+}-Tm^{3+}-Mn^{2+}$ tri-doped perovskite nanocrystals, Opt. Mater. Express, 4, 1186-1196 (2014).
  5. M. J. Lim, Y. N. Ko, Y. C. Kang, and K. Y. Jung, Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming $TiO_2$ composite double layers with dwon/up converting phosphor dispersion, RSC Adv., 4, 10039-10042 (2014).
  6. M. He, P. Huang, C. Zhang, J. Ma, R. He, and D. Cui, Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system, Chem. Eur. J., 18, 5954-5969 (2012).
  7. M. Ding, D. Chen, T. Chen, C. Lu, Y. Ni, and Z. Xu, Hydrothermal synthesis and upconversion luminescence properties of BaFCl:$Yb^{3+}/Er^{3+}$ microhseets, Mater. Lett., 128, 101-104 (2014).
  8. Y. Song, Y. Huang, L. Zhang, Y. Zheng, N. Guo, and H. You, $Gd_2O_2S$:Yb,Er submicrospheres with multicolor upconversion fluorescence, RSC Adv., 2, 4777-4781 (2012).
  9. F. Vetrone, J.-C. Boyer, J. A. Capobianoco, A. Speghini, and M. Bettinelli, Concentration-dependent near-infrared to visible upconversion in nanoscrystalline and bulk $Y_2O_3$:$Er^{3+}$, Chem. Mater., 15, 2737-2743 (2013).
  10. J.-H. Zeng, J. Su, Z.-H. Li, R.-X. Yan, and Y.-D. Li, Synthesis and upconversion luminescence of hexagonal-phase $NaYF_4$:Yb,$Er^{3+}$ phosphors of controlled size and morphology, Adv. Mater., 17, 2119-2123 (2005).
  11. C. Mi, Z. Tian, C. Cao, Z. Wang, C. Mao, and S. Xu, Novel microwave-assisted solvothermal synthesis of $NaYF_4$:Yb,Er upconversion nanoparticles and their application in cancer cell imaging, Langmuir, 27, 14632-14637 (2011).
  12. J. Zhao, Z. Lu, Y. Yin, C. Mcrae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, Upconversion luminescence with tunable lifetime in $NaYF_4$:Yb,Er nanocrystals: role of nanocrystal size, Nanoscale, 5, 944-952 (2013).
  13. M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011).
  14. X. Liu, X. Zhang, G. Tian, W. Yin, L. Yan, L. Ruan, Z. Yang, D. Xiao, and Z. Gu, A simple and efficient synthesis route for preparation of $NaYF_4$ upconversion nanoparticles by thermo-decomposition of rare-earth oleates, Cryst. Eng. Comm., 16, 5650-5661 (2014).
  15. Q. Xiao, G. Dong, and J. Qiu, Synthesis and up-conversion luminescence of $Yb^{3+}$/$Ln^{3+}$ (Ln = Er, Tm, Ho) co-doped strontium cerate by Pechini method, J. Am. Ceram. Soc., 97, 1899-1904 (2014).
  16. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, Effect of $Yb^{3+}$ codoping on the upconversion emission in nanocrystalline $Y_2O_3$:$Er^{3+}$, J. Phys. Chem. B, 107, 1107-1112 (2003).
  17. D. Matsuura, H. Hattori, and A. Takano, Upconversion luminescence properties of $Y_2O_3$ nanocrystals doped with trivalent rare-earth ions, J. Electrochem. Soc., 152, H39-H42 (2005).
  18. Y. Dwivedi, A. Bahadur, and S. B. Rai, Optical avalanche in Ho:Yb:$Gd_2O_3$ nanocrystals, J. Appl. Phys., 110, 043103-043103 (2011).
  19. V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, NIR to visible frequency upconversion in $Er^{3+}$ and $Yb^{3+}$ codoped $ZrO_2$ phosphor, Appl. Phys. A, 113, 747-753 (2013).
  20. K. Zheng, W. Song, C. Lv, Z. Liu, and W. Qin, Controllable synthesis and size-dependent upconversion luminescence properties of $Lu_2O_3$:$Yb^{3+}/Er^{3+}$ nanospheres, Cryst. Eng. Comm., 16, 4329-4337 (2014).
  21. J. Yang and J. Lin, Sol-gel synthesis of nanocrystalline $Yb^{3+}$/$Ho^{3+}$-doped $Lu_2O_3$ as an efficient green phosphor, J. Electrochem. Soc., 157, K273-K278 (2010).
  22. Z. Xu, Q. Zhao, Y. Sun, B. Ren, L. You, S. Wang, and F. Ding, Synthesis of hollow $La_2O_3$:$Yb^{3+}/Er^{3+}$ microspheres with tunable up-conversion luminescence properties, RSC Adv., 3, 8407-8416 (2013).
  23. X. Liu, S. Chen, and X. Wang, Synthesis and photoluminescence of $CeO_2$:$Eu^{3+}$ phosphor powder, J. Lumin., 127, 650-654 (2007).
  24. J.-H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, Up conversion luminescence of $Yb_{3+}$-$Er_{3+}$ codoped $CeO_2$ nanocrystals with imaging applications, J. Lumin., 132, 743-749 (2012).
  25. Z. Wang, F. Gu, Z. Wang, and D. Han, Solvothermal synthesis of $CeO_2$:Er/Yb nanorods and upconversion luminescence characterization, Mater. Res. Bull., 53, 141-144 (2014).
  26. K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, Luminescent properties of (Ba,Sr)$MgAl_{10}O_{17}$:Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation, Chem. Mater., 17, 2729-2734 (2005).
  27. M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, Luminescence Characteristics of $Y_3Al_{5-2y}(Mg,Si)_yO_{12}$:Ce phosphor prepared by spray pyrolysis, J. Electrochem. Soc., 157, H1135-H1139 (2010).
  28. J. H. Kim and K. Y. Jung, Luminescence characteristics and optimization of (La,Gd)$Sr_2(A,B)O_5$:Ce phosphor for white light emitting diodes, J. Lumin., 132, 1376-1381 (2012).
  29. W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, J. Kim, and S. H. Kim, Spray pyrolysis synthesis of $MAl_2O_4$:$Eu^{2+}$ (M=Ba, Sr) phosphor for UV LED excitation, J. Cryst. Growth, 326, 73-76 (2011).
  30. J. H. Kim and K. Y. Jung, Preparation and luminescence characterization of fine-sized $LaSr_2AlO_5$:Ce phosphor prepared by spray pyrolysis, J. Lumin., 131, 1487-1491 (2011).
  31. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 31, 836-850 (1953).
  32. S. H. M. Poort, W. P. Blocpoel, and G. Blasse, Luminescence of $Eu^{2+}$ in barium and strontium aluminate and gallate, Chem. Mater., 7, 1547-1551 (1995).
  33. Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, Upconversion luminescence, intensity saturation effect, and thermal effect in $Gd_2O_3$:$Er^{3+}$,$Yb^{3+}$ nanowire, J. Chem. Phys., 123, 174710 (2005).