DOI QR코드

DOI QR Code

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis

분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화

  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Park, Jea Hoon (Department of Chemical Engineering, Kongju National University) ;
  • Song, Shin Ae (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 정경열 (공주대학교 화학공학부) ;
  • 박재훈 (공주대학교 화학공학부) ;
  • 송신애 (한국생산기술연구원 마이크로제조시스템기술센터)
  • Received : 2015.03.06
  • Accepted : 2015.04.10
  • Published : 2015.06.10

Abstract

Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Keywords

Upconversion phosphor;Spray pyrolysis;Energy transfer;two-photon process

Acknowledgement

Grant : 고성능/고신뢰성 반도체 검사용 PCB제조공정 최적화 (2/3)

References

  1. Q. Li, W. Feng, and F. Li, Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo, Coord. Chem. Rev., 273-274, 100-110 (2014). https://doi.org/10.1016/j.ccr.2014.01.004
  2. T. R. Hinklin, S. C. Rand, and R. M. Laine, Transparent, Polycrystalline Upconverting Nanoceramics: Towards 3-D Displays, Adv. Mater., 20, 1270-1273 (2008). https://doi.org/10.1002/adma.200701235
  3. J. M. Meruga, A. Baride, W. Cross, J. J. Keller, and P. S. May, Red-green-blue printing using luminescence-upconversion inks, J. Mater. Chem. C, 2, 2221-2227 (2014).
  4. E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang, Tunable white upconversion luminescence from $Yb^{3+}-Tm^{3+}-Mn^{2+}$ tri-doped perovskite nanocrystals, Opt. Mater. Express, 4, 1186-1196 (2014). https://doi.org/10.1364/OME.4.001186
  5. M. J. Lim, Y. N. Ko, Y. C. Kang, and K. Y. Jung, Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming $TiO_2$ composite double layers with dwon/up converting phosphor dispersion, RSC Adv., 4, 10039-10042 (2014). https://doi.org/10.1039/c3ra47310d
  6. M. He, P. Huang, C. Zhang, J. Ma, R. He, and D. Cui, Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system, Chem. Eur. J., 18, 5954-5969 (2012). https://doi.org/10.1002/chem.201102419
  7. M. Ding, D. Chen, T. Chen, C. Lu, Y. Ni, and Z. Xu, Hydrothermal synthesis and upconversion luminescence properties of BaFCl:$Yb^{3+}/Er^{3+}$ microhseets, Mater. Lett., 128, 101-104 (2014). https://doi.org/10.1016/j.matlet.2014.04.111
  8. Y. Song, Y. Huang, L. Zhang, Y. Zheng, N. Guo, and H. You, $Gd_2O_2S$:Yb,Er submicrospheres with multicolor upconversion fluorescence, RSC Adv., 2, 4777-4781 (2012). https://doi.org/10.1039/c2ra00009a
  9. F. Vetrone, J.-C. Boyer, J. A. Capobianoco, A. Speghini, and M. Bettinelli, Concentration-dependent near-infrared to visible upconversion in nanoscrystalline and bulk $Y_2O_3$:$Er^{3+}$, Chem. Mater., 15, 2737-2743 (2013).
  10. J.-H. Zeng, J. Su, Z.-H. Li, R.-X. Yan, and Y.-D. Li, Synthesis and upconversion luminescence of hexagonal-phase $NaYF_4$:Yb,$Er^{3+}$ phosphors of controlled size and morphology, Adv. Mater., 17, 2119-2123 (2005). https://doi.org/10.1002/adma.200402046
  11. C. Mi, Z. Tian, C. Cao, Z. Wang, C. Mao, and S. Xu, Novel microwave-assisted solvothermal synthesis of $NaYF_4$:Yb,Er upconversion nanoparticles and their application in cancer cell imaging, Langmuir, 27, 14632-14637 (2011). https://doi.org/10.1021/la204015m
  12. J. Zhao, Z. Lu, Y. Yin, C. Mcrae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, Upconversion luminescence with tunable lifetime in $NaYF_4$:Yb,Er nanocrystals: role of nanocrystal size, Nanoscale, 5, 944-952 (2013). https://doi.org/10.1039/C2NR32482B
  13. M. Haase and H. Schafer, Upconverting nanoparticles, Angew. Chem. Int. Ed., 50, 5808-5829 (2011). https://doi.org/10.1002/anie.201005159
  14. X. Liu, X. Zhang, G. Tian, W. Yin, L. Yan, L. Ruan, Z. Yang, D. Xiao, and Z. Gu, A simple and efficient synthesis route for preparation of $NaYF_4$ upconversion nanoparticles by thermo-decomposition of rare-earth oleates, Cryst. Eng. Comm., 16, 5650-5661 (2014). https://doi.org/10.1039/c4ce00231h
  15. Q. Xiao, G. Dong, and J. Qiu, Synthesis and up-conversion luminescence of $Yb^{3+}$/$Ln^{3+}$ (Ln = Er, Tm, Ho) co-doped strontium cerate by Pechini method, J. Am. Ceram. Soc., 97, 1899-1904 (2014). https://doi.org/10.1111/jace.12865
  16. F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, Effect of $Yb^{3+}$ codoping on the upconversion emission in nanocrystalline $Y_2O_3$:$Er^{3+}$, J. Phys. Chem. B, 107, 1107-1112 (2003). https://doi.org/10.1021/jp0218692
  17. D. Matsuura, H. Hattori, and A. Takano, Upconversion luminescence properties of $Y_2O_3$ nanocrystals doped with trivalent rare-earth ions, J. Electrochem. Soc., 152, H39-H42 (2005).
  18. Y. Dwivedi, A. Bahadur, and S. B. Rai, Optical avalanche in Ho:Yb:$Gd_2O_3$ nanocrystals, J. Appl. Phys., 110, 043103-043103 (2011). https://doi.org/10.1063/1.3622624
  19. V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, NIR to visible frequency upconversion in $Er^{3+}$ and $Yb^{3+}$ codoped $ZrO_2$ phosphor, Appl. Phys. A, 113, 747-753 (2013). https://doi.org/10.1007/s00339-013-7583-9
  20. K. Zheng, W. Song, C. Lv, Z. Liu, and W. Qin, Controllable synthesis and size-dependent upconversion luminescence properties of $Lu_2O_3$:$Yb^{3+}/Er^{3+}$ nanospheres, Cryst. Eng. Comm., 16, 4329-4337 (2014). https://doi.org/10.1039/c4ce00036f
  21. J. Yang and J. Lin, Sol-gel synthesis of nanocrystalline $Yb^{3+}$/$Ho^{3+}$-doped $Lu_2O_3$ as an efficient green phosphor, J. Electrochem. Soc., 157, K273-K278 (2010). https://doi.org/10.1149/1.3496669
  22. Z. Xu, Q. Zhao, Y. Sun, B. Ren, L. You, S. Wang, and F. Ding, Synthesis of hollow $La_2O_3$:$Yb^{3+}/Er^{3+}$ microspheres with tunable up-conversion luminescence properties, RSC Adv., 3, 8407-8416 (2013). https://doi.org/10.1039/c3ra40414e
  23. X. Liu, S. Chen, and X. Wang, Synthesis and photoluminescence of $CeO_2$:$Eu^{3+}$ phosphor powder, J. Lumin., 127, 650-654 (2007). https://doi.org/10.1016/j.jlumin.2007.03.014
  24. J.-H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, Up conversion luminescence of $Yb_{3+}$-$Er_{3+}$ codoped $CeO_2$ nanocrystals with imaging applications, J. Lumin., 132, 743-749 (2012). https://doi.org/10.1016/j.jlumin.2011.11.011
  25. Z. Wang, F. Gu, Z. Wang, and D. Han, Solvothermal synthesis of $CeO_2$:Er/Yb nanorods and upconversion luminescence characterization, Mater. Res. Bull., 53, 141-144 (2014). https://doi.org/10.1016/j.materresbull.2014.02.003
  26. K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, Luminescent properties of (Ba,Sr)$MgAl_{10}O_{17}$:Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation, Chem. Mater., 17, 2729-2734 (2005). https://doi.org/10.1021/cm050074f
  27. M. C. Maniquiz, K. Y. Jung, and S. M. Jeong, Luminescence Characteristics of $Y_3Al_{5-2y}(Mg,Si)_yO_{12}$:Ce phosphor prepared by spray pyrolysis, J. Electrochem. Soc., 157, H1135-H1139 (2010). https://doi.org/10.1149/1.3503569
  28. J. H. Kim and K. Y. Jung, Luminescence characteristics and optimization of (La,Gd)$Sr_2(A,B)O_5$:Ce phosphor for white light emitting diodes, J. Lumin., 132, 1376-1381 (2012). https://doi.org/10.1016/j.jlumin.2012.01.029
  29. W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, J. Kim, and S. H. Kim, Spray pyrolysis synthesis of $MAl_2O_4$:$Eu^{2+}$ (M=Ba, Sr) phosphor for UV LED excitation, J. Cryst. Growth, 326, 73-76 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.055
  30. J. H. Kim and K. Y. Jung, Preparation and luminescence characterization of fine-sized $LaSr_2AlO_5$:Ce phosphor prepared by spray pyrolysis, J. Lumin., 131, 1487-1491 (2011). https://doi.org/10.1016/j.jlumin.2011.03.054
  31. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 31, 836-850 (1953).
  32. S. H. M. Poort, W. P. Blocpoel, and G. Blasse, Luminescence of $Eu^{2+}$ in barium and strontium aluminate and gallate, Chem. Mater., 7, 1547-1551 (1995). https://doi.org/10.1021/cm00056a022
  33. Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, Upconversion luminescence, intensity saturation effect, and thermal effect in $Gd_2O_3$:$Er^{3+}$,$Yb^{3+}$ nanowire, J. Chem. Phys., 123, 174710 (2005). https://doi.org/10.1063/1.2087487