Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process

DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구

  • Lee, Chulho (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Dongeun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Sunkyu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 이철호 (인하대학교 화학.화학공학 융합학과) ;
  • 이동은 (인하대학교 화학.화학공학 융합학과) ;
  • 김선규 (인하대학교 화학.화학공학 융합학과) ;
  • 유현석 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2015.03.05
  • Accepted : 2015.04.08
  • Published : 2015.06.10


In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.


Hematite;Water splitting;Photoelectrochemistry;Binder;Oxygen evolution reaction


Grant : 분자촉매 설계 및 응용연구 사업단


  1. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253-278 (2009).
  2. Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414, 625-627 (2001).
  3. X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110, 6503-6570 (2010).
  4. F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35-54 (2008).
  5. G. K. Mor, K. Shankar, M. Paulos, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano. Lett., 5, 191-195 (2005).
  6. G. Liu, L. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring, J. Mater. Chem., 20, 831-843 (2010).
  7. R. Abe, T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and $WO_3$ with an $IO_3^-/I^-$ shuttle redox mediator, Chem. Commun., 30, 3829-3831 (2005).
  8. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater., 19, 1849-1856 (2009).
  9. K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Tan, M. A. Jassim, and J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387-392 (2008).
  10. M. Sathish, B. Viswanathan, and R. P. Viswanath, Alternative synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrogen Energ., 31, 891-898 (2006).
  11. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc., 133, 10878-10884 (2011).
  12. K. Sivula, F. L. Formal, and M. Gratzel, Solar water splitting: progress using hematite (${\alpha}-Fe_2O_3$) photoelectrodes, Chem. Sus. Chem., 4, 432-449 (2011).
  13. M. T. Mayer, Y. Lin, G. Yuan, and D. Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite, Accounts Chem. Res., 46, 1558-1566 (2013).
  14. Y. Ling, G. Yuan, S. Sheehan, S. Zhou, and D. Wang, Hematite-based solar water splitting: challenges and opportunities, Energ. Environ. Sci., 4, 4862-4869 (2011).
  15. F. L. Formal, M. Gratzel, and K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater., 20, 1099-1107 (2010).
  16. S. Shen, Toward efficient solar water splitting over hematite photoelectrodes, J. Mater. Res., 29, 29-46 (2014).
  17. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396, 152-155 (1998).
  18. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE T. Plasma Sci., 26, 1685-1694 (1998).
  19. H. M. Yang, W. K. Nam, and D. W. Park, Production of nano-sized carbon black from hydrocarbon by a thermal plasma, J. Nanosci. Nanotechno., 7, 3744-3749 (2007).
  20. S. J. Kim and D. W. Park, Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property, Appl. Surf. Sci., 255, 5363-5367 (2009).
  21. J. W. Park, D. W. Kim, H. S. Seon, K. S. Kim, and D. W. Park, Synthesis of carbon-doped TiO2 nanoparticles using CO2 decomposition by thermal plasma, Thin Solid Films, 518, 4113-4116 (2010).
  22. S. H. Lee, S. M. Oh, and D. W. Park, Preparation of silver nanopowder by thermal plasma, Mat. Sci. Eng. C-Bio. S., 27, 1286-1290 (2007).
  23. C. Sasso, D. Beneventi, E. Zeno, M. P. Conil, D. Chaussy, and M. N. Belgacem, Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium, Synthetic Met., 161, 397-403 (2011).