A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process

고도산화공정을 이용한 고농도 무전해 니켈도금 폐액 처리방안 연구

  • Seo, Minhye (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Cho, Sungsu (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Sooyoung (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Kim, Jinho (Inchoen Chemical Co., LTD.) ;
  • Kang, Yong-Ho (Inchoen Chemical Co., LTD.) ;
  • Uhm, Sunghyun (Advanced Materials & Processing Center, Institute for Advanced Engineering)
  • 서민혜 (고등기술연구원 신소재공정센터) ;
  • 조성수 (고등기술연구원 신소재공정센터) ;
  • 이수영 (고등기술연구원 신소재공정센터) ;
  • 김진호 (인천화학(주)) ;
  • 강용호 (인천화학(주)) ;
  • 엄성현 (고등기술연구원 신소재공정센터)
  • Received : 2015.02.03
  • Accepted : 2015.03.12
  • Published : 2015.06.10


We develop advanced oxidation processes for the treatment of spent electroless nickel plating solution. Apart form recovering nickel by leaching and enrichment, more emphasis is placed on rendering the waste water recyclable via oxidizing phosphite and hypophosphite into phosphate which can then be precipitated easily. $UV/H_2O_2$ process is employed and the conversion efficiency of COD and $PO_4-P$, and $H_2O_2$ consumption are analyzed. Furthermore, the $UV/H_2O_2/O_3$ process in conjunction with $O_3$ generator enables us to not only save the treatment time by 6 hours but also reduce $H_2O_2$ consumption by 30%.


spent electroless nickel plating solution;advanced oxidation process;photo-chemical method;chemical oxygen demand;phosphate


  1. W. C. Ying, R. R. Bonk, and M. E. Tucker, Precipitation treatment of spent electroless nickel plating baths, J. Hazard. Mater., 18, 69-89 (1988).
  2. D. H. Cheng, W. Y. Xu, Z. Y. Zhang, and Z. H. Yiao, Electroless copper plating using hypophosphite as reducing agent, Met. Finish., 95, 34-37 (1997).
  3. H-Y. Lee, Recovery of nickel from electroless plating wastewater by electrolysis method, J. Kor. Inst. Resour. Recycl., 21, 41-46 (2012).
  4. L. E. de-Bashan and Y. Bashan, Recent advances in removing phosphorous from waste water and its future use as fertilizer (1997-2003), Water Res., 38, 4222-4246 (2004).
  5. E. Neyens and J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98, 33-50 (2003).
  6. A. D. Bokare and W. Choi, Review of iron-free fenton-like systems for activating $H_2O_2$ in advanced oxidation processes, J. Hazard. Mater., 275, 121-135 (2014).
  7. D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, Photocatalytic degradation for environmental applications, J. Chem. Technol. Biotechnol., 77, 102-116 (2002).
  8. P. R. Gogate and A. B. Pandit, A review of imperative technologies for waste water treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8, 501-551 (2004).
  9. C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios, and D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83, 769-776 (2008).
  10. J. M. Poyatos, M. M. Munio, M. C. Almecija, J. C. Torres, E. Hontoria, and F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art, Water Air Soil Pollut., 205, 187-204 (2010).
  11. J. Pawlat, H. D. Stryczewska, and K. Ebihara, Sterilization techniques for soil remediation and agriculture based on ozone and AOP, J. Adv. Oxid. Technol., 13, 138-145 (2010).
  12. F. A. Al Momani, Potential use of solar energy for waste activated sludge treatment, Int. J. Sust. Eng., 6, 82-91 (2013).
  13. C. Domeno, A. Rodriguez-Lafuente, J. Martos, R. Bilbao, and C. Nerin, VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation and ozonization, Environ. Sci. Technol., 44, 2585-2591 (2010).
  14. R. Sapach and T. Viraraghavan, An introduction to the use of hydrogen peroxide and ultraviolet radiation: An advanced oxidation process, J. Environ. Sci. Health, A., 32, 2355-2366 (1997).
  15. S. Vilhunen, M. Vilve, M. Vepsalainen, and M. Sillanpaa, Removal of organic matter from a variety of water matrices by UV photolysis and UV/$H_2O_2$ method, J. Hazard. Mater., 179, 776-782 (2010).
  16. P. Liu, C. Li, X. Liang, J. Xu, G. Lu, and F. Ji, Advanced oxidation of hypophosphite and phosphite using a UV/$H_2O_2$ process, Environ. Technol., 34, 2231-2239 (2013).
  17. Y.-J. Shih, C.-P. Lin, and Y.-H. Huang, Application of fered-fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater, Sep. Purif. Technol., 104, 100-105 (2013).
  18. P. Liu, C. Li, X. Liang, G. Lu, J. Xu, X. Dong, W. Zhang, and F. Ji, Recovery of high purity ferric phosphate from a spent electroless nickel plating bath, Green Chem., 16, 1217-1224 (2014).