DOI QR코드

DOI QR Code

Characterization of Chlorella Vulgaris Mutants Generated by EMS (Ethyl Methane Sulphonate)

EMS (Ethyl Methane Sulphonate) 처리에 의한 Chlorella Vulgaris 변이주 생성 및 특성 분석

  • Kim, Ok Ju (Chloland Co. Ltd.) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical & Life Science, Silla University)
  • 김옥주 ((주) 클로랜드) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학)
  • Received : 2015.01.19
  • Accepted : 2015.03.17
  • Published : 2015.06.10

Abstract

Chlorella vulgaris (C. vulgaris) is a spherical unicellular green algae and the diameter ranges from 2 to $10{\mu}m$. C. vulgaris possess nutritional excellence because it contains various functional materials including high protein contents, chlorophyll, carotenoid, and chlorella growth factor (CGF). In order to study effects of mutagen, ethyl methane sulphonate (EMS) was used as a chemical mutagen and some mutants could be obtained. We named 2 type mutants as E14 and E24 obtained after treating with EMS. In the cell growth, growth patterns of mutants were similar to those of the wild type. Chlorophyll contents of E14 and E24 increased up to 99 and 52%, respectively compared to those of the wild type. The carotenoid content of E14 increased to 7%, but the value of E24 decreased 5% compared to that of the wild type. For the lipid contents E24 increased to 23%, while E14 decreased 12% when compared to those of the wild type. As a result, there is no difference between the mutants and wild type in the cell growth, but considering that mutants contains more physiological materials than those of the wild type, we can expect the mutants of C. vulgaris could be used as important high added-value materials.

Keywords

Microalgae;Chlorella vulgaris;Mutants;EMS (Ethyl Methane Sulphonate)

References

  1. D. S. Joo, C. K. jung, C. H. Lee, and S. Y. Cho, Content of phycocyanins and growth of spirulina platensis with culture conditions, J. Korean Fish. Soc., 33, 475-481 (2000).
  2. S. D. Varfolomeev and L. A. Wasserman, Microalgae as source of biofuel, food, fodder, and medicines, Appl. Biochem. Microbiol., 47, 789-807 (2011). https://doi.org/10.1134/S0003683811090079
  3. R. A. Kay and L. L. Barton, Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr., 30, 555-573 (1991). https://doi.org/10.1080/10408399109527556
  4. S. H. Ohh, A study on the change up chlorophyll due to the fermentation of Kimchi, Journal of the Korean Professional Engineers Association, 18, 12-22(1985).
  5. S. C. Hong, J. H. Han, J. Lee, Y. K. Ahn, E. Y. Yang, S. Y. Chae, S. Kim, and J. B. Yoon, A simple and Fast Microplate Method for Analysis of Caroteniods content in Chili Pepper(Capsicum annuum L.), Kor. J. Hort. Sci. Technol., 31, 807-812 (2013).
  6. M. Atsushi, What is chlorella. Food Ind., 9, 122-138 (1999).
  7. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  8. Y. J. Kim, S. Jeong, S. Kwon, and M. K. Kim, Effect of Chlorella vulgaris intake on antioxidative capacity in rats oxidatively stressed with dietary cadmium, Food Sci. Biotechnol., 18, 1055-1062 (2009).
  9. J.-Y. Shim, H.-S. Shin, J.-G. Han, H.-S. Park, B.-L. Lim K-W. Chung, and A.-S. Om, Protectice effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats, J. Med. Food., 11, 479-485 (2008). https://doi.org/10.1089/jmf.2007.0075
  10. T. Hasegwa, K. Ito, S. Kumamoto, Y. Ando, A. Yamada, K. Nomoto, and Y. Yasunobu, Oral administration of a hot water extracts of chlorella vulgaris reduces IgE production against milk casein in mice, Int. J. Immunophamacol., 21, 311-323 (1999). https://doi.org/10.1016/S0192-0561(99)00013-2
  11. S. Guzman, A. Gato, M. Lamela, M. Freire-Garabal, and J. M. Calleja, Anti-inflammatory anf immunomodulatory activities of polysaccharide from chlorella stigmatophora and phaeodactylum tricornutu,. Phytother. Res., 17, 665-670 (2003). https://doi.org/10.1002/ptr.1227
  12. S. Shibata, Y. Natori, T. Nishihara, K. Tomisaka, K. Matsumoto, H. Sansawa, and V. C. Nguyen, Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes, J. Nutr. Sci. Vitaminol., 49, 334-339 (2003). https://doi.org/10.3177/jnsv.49.334
  13. M. Okudo, T. Hasegawa, M. Sonoda, T. Okabe and M. Tanaka, The effects of Chlorella on the level of cholesterol in serum and liver, Jap. J. Nutr., 33, 3-8 (1975). https://doi.org/10.5264/eiyogakuzashi.33.3
  14. M. K. Park, J. M. Lee, C. H. Park, and M. J. In, Quality characteristics of sulgidduk containing Chlorella powder, J. Korean Soc. Food Sci. Nutr., 31, 225-229 (2002). https://doi.org/10.3746/jkfn.2002.31.2.225
  15. B. H. Jo and H. J. Cha, Biodiesel production using microalgal marine biomass, Kor. Soc. Biotechnol. Bioeng. J., 25, 109 (2010).
  16. K. D. Sung, J. H. Ann, J. Y. Lee, S. J. Ohh, and H. Y. Lee, Kinetics of cultivating photosynthetic microalga, spirulina platensis in an outdoor photobioreactor, Kor. Soc. Biotechnol. Bioeng. J., 10, 401 (1995).
  17. S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition, Appl. Chem. Eng., 24, 628-632(2013). https://doi.org/10.14478/ace.2013.1085
  18. H.-J. Park, Y.-H. Kim, and J.-H. Lee, Caracterization of arthrospira platensis mutants generated by UV-B irradiation, Appl. Chem. Eng., 23, 496-500 (2012).
  19. B. S. Kanath, R. Vidhyavathi, R. Sarada, and G. A. Ravishankar, Enhancement of carotenoids by mutation and stress induced carotenogenic genes in haematococcus pluvialis mutants, Bioresour. Technol., 99, 8667-8673 (2008). https://doi.org/10.1016/j.biortech.2008.04.013
  20. H.-J. Park, E.-J. Jin, T.-M. Jung, and J.-H. Lee, Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Appl. Chem. Eng., 21, 659-663 (2010).
  21. Y.-H. Kim and J.-H Lee, Isolation of arthrospira platensis mutants producing high lipid and phycobiliproteins, Kor. Soc. Biotechnol. Bioeng. J., 27, 172-176 (2012).
  22. S. P. Shukla and A. K. Kashyap, An assessment of biopotential of three cyanobacterial isolates from antarctic for carotenoid production, Indian J. Biochem. Biophys., 40, 362-366 (2003).
  23. W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 120, 135-141 (2011).
  24. S.-J. Choi, Y.-H. Kim, I.-H. Jung, and J.-H. Lee, Effect of nano bubble oxygen and hydrogen water on microalgae, Appl. Chem. Eng., 25(3), 324-329 (2014). https://doi.org/10.14478/ace.2014.1038
  25. C. Yoo, C. J. Kim, G. G. Choi, C. Y. Ahn, J. S. Chio, and H. M Oh, A mutant arthrospora platensis M20CJK3 showing enhanced growth rate and floatation activity, Kor. J. Microbiol., 45, 268-274 (2009).
  26. H. S. Jeong, M. K Choi, T.-O. Choi, and J.-H. Lee, Isolation of lipid high-yielding chlorella vulgaris mutants by UV irradiation, J. Mar. Biosci. Biotechnol., 6, 26-30 (2014). https://doi.org/10.15433/ksmb.2014.6.1.026
  27. T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: a review. Renew. Sustain, Energy Reviews., 14, 217-232 (2010). https://doi.org/10.1016/j.rser.2009.07.020
  28. C. Attilio, A. C. Alessandro, Y. O. Erika, P. Patrizia, and M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem Eng Process., 48, 1146-1151 (2009). https://doi.org/10.1016/j.cep.2009.03.006