Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same

PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성

  • Kim, Moon-Sun (Institude of Science and Technology, Sungkyunkwan University) ;
  • Lee, Sangeun (Department of Chemical Engineering, Sungkyunkwan University)
  • 김문선 (성균관대학교 과학기술연구소) ;
  • 이상은 (성균관대학교 화학공학과)
  • Received : 2014.11.04
  • Accepted : 2015.04.14
  • Published : 2015.06.10


In the study, PLLA with 12,000 g/mol ($M_n$) and 14,000 g/mol ($M_w$) was synthesized from L-lactide, and used to synthesize PLLA-Br intermediate. PLLA-block-PMMA with 84,000 g/mol ($M_n$) and 126,000 g/mol ($M_w$) was finally synthesized from PLLA-Br intermediate. The glass transition temperature ($T_g$) and initial pyrolysis temperature of PLLA-block-PMMA are $95.5^{\circ}C$ and $289^{\circ}C$, respectively. The PLA film of $50{\pm}3{\mu}m$ thickness was prepared by blending PLA with 9 phr PLLA-block-PMMA followed by stretching biaxially at 3 times under $95^{\circ}C$, and annealing at $120^{\circ}C$ for 2 min. The light transmittance at 550 nm and tensile strength of the film are 88.5% and 44.5 MPa, respectively. To enhance the tensile strength of PLA film, it was required to keep the film more than 2 min at $120^{\circ}C$ during the annealing step after a biaxially orientation.


  1. G. S. Kim, M. S. Kim, and B. W. Kim, Study on isothermal crystallization characteristics of PLA film by adding APP as a nucleation agent, Korean Chem. Eng. Res., 50, 582-587 (2012).
  2. J. Kim, M. S. Kim, and B. W. Kim, Study on isothermal crystallization behavior and surface properties of non-oriented PLA film with annealing temperature, Korean Chem. Eng. Res., 49, 611-616 (2011).
  3. H. M. Park, M. Misra, L. T. Drzal, and A. K. Mohanty, "Green" nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer, Biomacromolecules, 5, 2281-2288 (2004).
  4. G. Perego, G. D. Cella, and C. Bastioli, Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, J. Appl. Polym. Sci., 59, 37-43 (1996).<37::AID-APP6>3.0.CO;2-N
  5. C. Y. Hung, C. C. Wang, and C. Y. Chen, Enhanced the thermal stability and rystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders, Polymer, 54, 1860-1866 (2013).
  6. S. H. Tabatabaei and A. Ajji, Crystal structure and orientation of uniaxially PLA and PP nanoclay composite films, J. Appl. Polym. Sci., 124, 4854-4863 (2012).
  7. G. S. Kim, M. S. Kim, and B. W. Kim, Effect on adding isopropylphenyl diphenyl phosphate on isothermal crystallization behavior and flame retardancy of PLA film, Appl. Chem. Eng., 23, 169-175 (2012).
  8. G. Zhang, J. Zhang, S. Wang, and D. Shen, Miscibility and phase structure of biary blends of polyactide and poly(methyl methacrylate), J. Polym. Sci. Part B., 41, 23-30 (2003).
  9. K. P. Le, R. Lehman, J. Remmert, K. VanNess, P. M. L. Ward., and J. D. Idol, Multiphase blends from poly(L-lactide) and poly(methyl methacrylate), J. Biomate. Sci., Polym. Edn., 17, 121-137 (2006).
  10. D. Cossement, R. Gouttebaron, V. Cornet, P. Viville, M. Hecq, and R. Lazzaroni, PLA-PMMA blends: A study by XPS and ToF-SIMS, Appl. Surf. Sci., 252, 6636-6639 (2006).
  11. S. H. Li and E. M. Woo, Immiscibility-misciblility phase transitions in blends of poly(L-lactide) with poly(methyl methacrylate), Polym. Int., 57, 1242-1261 (2008).
  12. J. K. Oh, Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications, Royal Soc. Chem., Doi:10.1039/c0sm01539c.
  13. C. P. Wu, C. C. Wang, and C. Y. Chen, Enhancing the PLA crystallization rate by incorporating a polystyrene-block-poly(methyl methacrylate) block copolymer: synergy of polystyrene and poly(methyl methacrylate) segments, Polym. Physics., Doi:10.1002/polb.23492.
  14. S. Kaihara, S. Matsumura, A. G. Mikos, and J. P. Fisher, Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization, Nat. Protocol., 2, 2767-2771 (2007).
  15. C. Choochottiros, E. Park, and I. J. Chin, Synthesis and characterization of polylactide-poly(methyl methacrylate) copolymer by combining of ROP and AGET ATRP, J. Ind. Eng. Chem., 18, 993-1000 (2012).
  16. M. Bagheri and F. Motirasoul, Synthesis, characterization, and micellization of cholesteryl-modified amphiphilic poly(L-lactide)-block-poly(glycidyl methacrylate) as a nanocarrier for hydrophobic drugs. J. Polym. Res., Doi:10.1007/s10956-012-0059-3 (2013).
  17. C. Choochottiros and I. J. Chin, Potential transparent PLA impact modifiers based on PMMA copolymers, Eur. Polym. J., 49, 957-966 (2013).
  18. S. W. Chun, S. H. Kim, Y. H. Kim, and H. J. Kang, Thermal properties of linear shape polylactic acid/star shape polylactic acid blends, Polymer(Korea), 24, 333-341 (2000).
  19. C. Wang, H. Li, and X. Zhao, Ring opening polymerization of L-lactide initiated by creatinine, Biomaterials, 25, 5797-5801 (2004).
  20. J. C. Wu, B. H. Huang, M. L. Hsueh, S. L. Lai, and C. C. Lin, Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides, Polymer, 46, 9784-9792 (2005).
  21. P. S. Umare, G. L. Tembe, K. V. Rao, U. S. Satpathy, and B. Trivedi, Catalytic ring-opening polymerization of L-lactide by titanium biphenoxy-alkoxide initiators, J. Mole. Catal., A268, 235-243 (2007).
  22. K. W. Lee, H. S. Park, and Y. H. Kim, Crystallization behavior and thermal property of poly(D-lactic acid-b-L-lactic acid), Text. Sci. Eng., 47, 406-413 (2010).
  23. B. C. Ji, W. S. Yoon, and S. Y. Kim, Structure and properties of zone-drawn PET film (I), J. Korean Fiber Soc., 30, 328-334 (1993).
  24. B. C. Ji, W. S. Yoon, and S. Y. Kim, Structure and properties of zone-drawn PET film (II), J. Korean Fiber Soc., 30, 379-387 (1993).
  25. J. G. Lee, S. H. Park, and S. H. Kim, Investigation of properties of the PET film dependent on the biaxial strectching, Polymer(Korea), 34, 579-587 (2010).