Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application

전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체

  • Yang, Kap Seung (Department of Polymer Engineering, Graduate School, Chonnam National University) ;
  • Kim, Bo Hye (Division of Science Education, Daegu University)
  • 양갑승 (전남대학교 고분자융합소재공학부) ;
  • 김보혜 (대구대학교 과학교육학부 화학교육전공)
  • Received : 2015.05.19
  • Published : 2015.06.10


The hybridization of carbon nano-materials enhances the efficiency of each function of the resulting structure or composites. Also, the addition of non-carbon elements to nanomaterials modifies the electrochemical properties. Electrodes combining porous carbon nanofibers (CNFs) and metal oxides benefit from the combination of the double-layer capacitance of the CNFs and the pseudocapacitive character associated with the surface redox-type reactions. Consequently, they demonstrate superior supercapacitor performance in terms of high capacitance, high energy/power efficiency and high rate capability. This paper presents a comprehensive review of the latest advances made in the development and application of various metal oxide/CNF composites (CNFCs) to supercapacitor electrodes.


Supported by : National Research Foundation of Korea (NRF)


  1. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, and Y. Liu, High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures, ACS Appl. Mater. Interfaces, 3, 590-596 (2011).
  2. S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, and X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010).
  3. K. W. Nam, E. S. Lee, J. H. Kim, Y. H. Lee, and K. B. Kim, Synthesis and electrochemical investigations of $Ni_{1-x}O$ thin films and $Ni_{1-x}O$ on three-dimensional carbon substrates for electrochemical capacitors batteries, fuel cells, and energy conversion, J. Electrochem. Soc., 152, A2123-A2129 (2005).
  4. I. H. Kim, J. H. Kim, and K. B. Kim, Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application, Electrochem. Solid-State Lett., 8, A369-A372 (2005).
  5. B.-H. Kim, C. H. Kim, K. S. Yang, A. Rahy, and D. J. Yang, Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes, Electrochim. Acta, 83, 335-340 (2012).
  6. B.-H. Kim, K. S. Yang, and D. J. Yang, Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors, Electrochim. Acta, 109, 859-865 (2013).
  7. M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, and A. K. Shukla, $V_2O_5$-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage, J. Am. Chem. Soc., 133, 16291-16299 (2011).
  8. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, and T. Kudo, Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores, J. Phys. Chem. C, 111, 227-233 (2007).
  9. S. W. Woo, K. Dokko, H. Nakano, and K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors, J. Mater. Chem., 18, 1674-1680 (2008).
  10. D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage, Angew. Chem. Int. Edit., 47, 373-376 (2008).
  11. M. Selvakumar, D. K. Bhat, A. M. Aggarwal, S. P. Iyer, and G. Sravani, Nano ZnO activated carbon composite electrodes for supercapacitors, Phys. B, 405, 2286-2289 (2010).
  12. L. S. Aravindaa, K. K. Nagarajab, H. S. Nagarajab, K. U. Bhat, and B. R. Bhat, ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta, 95, 119-124 (2013).
  13. Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, and B. K. Tay, Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors, Solid State Ionics, 180, 1525-1528 (2009).
  14. D. Kalpana, K. S. Omkumar, S. S. Kumar, and N. G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochim. Acta, 52, 1309-1315 (2006).
  15. C. H. Kim and B.-H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes, J. Power Sources, 274, 512-520 (2015).
  16. C. H. Kim and B.-H. Kim, Electrochemical behavior of zinc oxide-based porous carbon composite nanofibers as an electrode for electrochemical capacitors, J. Electro. Chem., 730, 1-9 (2014).
  17. K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006).
  18. J. Fan, T. Wang, C. Z. Yu, B. Tu, Z. Jiang, and D. Zhao, Ordered, nanostructured tin based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater., 16, 1432-1436 (2004).
  19. L. Shi, H. He, Y. Fang, Y. Jia, B. Luo, and L. Zhi, Effect of heating rate on the electrochemical performance of $MnO_X@CNF$ nanocomposites as supercapacitor electrodes, Chin. Sci. Bull., 59, 1832-1837 (2014).
  20. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001).
  21. C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, Hydrothermally synthesized $RuO_2$/Carbon nanofibers composites for use in high-rate supercapacitor electrodes, Compos. Sci. Technol., 72, 1524-1529 (2012).
  22. B. J. Lee, S. R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, and D. Y. Kim, Carbon nanofibre/hydrous $RuO_2$ nanocomposite electrodes for supercapacitors, J. Power Sources, 168, 546-552 (2007).
  23. Y.-W. Ju, G.-R. Choi, H.-R. Jung, C. Kim, K.-S. Yang, and W.-J. Lee, Structure and electrochemistry of $LiNi_{1/3}Co_{{1/3}{\cdot}{y}}M_yMn_{1/3}O_2$ (M=Ti, Al, Fe) positive electrode material, J. Electrochem Soc., 154, A192-A198 (2007).
  24. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, and J. Shi, $MnO_2$-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors, J. Phys. Chem. B, 110, 6015-6019 (2006).
  25. M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, and L. Chen, Development of $MnO_2$/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A, 2, 2555-2562 (2014).
  26. T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, and K. Kajita, Amorphous $V_2O_5$/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152, 833-841 (2002).
  27. G. X. Wang, B. L. Zhang, Z. L. Yu, and M. Z. Qu, Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics, 176, 1169-1174 (2005).
  28. S. Suzuki, M. Hibino, and M. Miyayama, High rate lithium intercalation properties of $V_2O_5$/carbon/ceramic-filler composites, J. Power Sources, 124, 513-517 (2003).
  29. A. Dobley, K. Ngala, S. Yang, P. Y. Zavalij, and M. S. Whittingham, Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization, and Electrochemistry, Chem. Mater., 13, 4382-4386 (2001).
  30. J. S. Sakamoto and B. Dunn, Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries, J. Electrochem. Soc., 149, A26-A30 (2002).
  31. T. Battumur, S. B. Ambade, R. B. Ambade, P. Pokharel, D. S. Lee, S.-H. Han, W. Lee, and S.-H. Lee, Addition of multiwalled carbon nanotube and graphene nanosheet in cobalt oxide film for enhancement of capacitance in electrochemical capacitors, Curr. Appl. Phys., 13, 196-204 (2013).
  32. W. J. Morton, Method of dispersing fluids, UNITED STATES PATENT, N0. 705,691 (1902).
  33. C. Kim, K. H. An, Y. H. Lee, and K. S. Yang, Nanocomposite fiber, its preparation and use, Korean Patent 10-2004-0088578 (in Korean) (2004).
  34. S. F. Fennessey and R. J. Farris, Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer, 45, 4217-4225 (2004).
  35. C. Shao, H. Y. Kim, J. Gong, B, Ding, D. R. Lee, and S. J. Park, Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning, Mater. Lett., 57, 1579-1584 (2003).
  36. A. Holzmeister, M. Rudisile, A. Greiner, and J. H. Wendorff, Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 43, 4859-4867 (2007).
  37. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Humidity sensing properties of $BaTiO_3$ nanofiber prepared via electrospinning, Sen. Actuat. B: Chem., 146, 98-102 (2010).
  38. J. T. McCann, M. Marquez, and Y. Xia, Highly Porous Fibers by Electrospinning into a Cryogenic Liquid, J. Am. Chem. Soc., 128, 1436-1437 (2006).
  39. E. J. Ra, T. H. Kim, W. J. Yu, K. H. An, and Y. H. Lee, Ultramicropore formation in PAN/camphor-based carbon nanofiber paper, Chem. Commun., 46, 1320-1322 (2010).
  40. C. Kim and K. S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett., 83, 1216-1218 (2003).
  41. K. Xia, Q. Gao, J. Jiang, and J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials, Carbon, 46, 1718-1726 (2008).
  42. J. L. Hu, J. H. Huang, Y. K. Chih, C. C. Chuang, J. P. Chen, S. H. Cheng, and J. L. Horng, Effects of thermal treatments on the supercapacitive performances of PAN-based carbon fiber electrodes, Diam. Relat. Mater., 18, 511-521 (2009).
  43. Y.-W. Ju, G.-R. Choi, H.-R. Jung, and W.-J. Lee, Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole, Electrochim. Acta, 53, 5796-5803 (2008).
  44. H. Wang, Q. Gao, and J. Hu, Preparation of porous doped carbons and the high performance in electrochemical capacitors, Microporous Mesoporous Mater., 131, 89-96 (2010).
  45. C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogosti, and P. Simon, Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, J. Am. Chem. Soc., 130, 2730-2731 (2008).
  46. Y. Guo, J. Hu, and L. Wan, Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices, Adv. Mater., 20, 2878-2887 (2008).
  47. H. Wang, H. S. Casalongue, Y. Liang, and H. Dai, $Ni(OH)_2$ nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132, 7472-7477 (2010).
  48. J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, Science, 328, 480-483 (2010).
  49. J. R. Miller, R. A. Outlaw, and B. C. Holloway, Graphene double-layer capacitor withac line-filtering performance, Science, 329, 1637-1369 (2010).
  50. Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, S. Dong, A. S. Eric, and S. R. Rodney, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011).
  51. A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima, and K. Hata, High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite, ACS Nano, 5, 811-819 (2011).
  52. M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012).
  53. A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006).
  54. A. Nishino, Capacitors: operating principles, current market and technical trends, J. Power Sources, 60, 137-147 (1990).
  55. M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104, 4245-4269 (2004).
  56. A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4, 366-377 (2005).
  57. C. Lei, P. Wilson, and C. Lekakou, Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors, J. Power Sources, 196, 7823-7827 (2011).
  58. J. P. Zheng, Ruthenium Oxide Carbon Composite Electrodes for Electrochemical Capacitors, Electrochem. Solid-State Lett., 2, 359-361 (1999).
  59. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937-950 (2001).
  60. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, J. Electrochem. Soc., 148, A910-A914 (2001).
  61. H. Teng, Y. Chang, and C. T. Hsieh, Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 39, 1981-1987 (2001).
  62. C. T. Hsieh and H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674 (2002).
  63. J. S. Ye, H. F. Cui, X. Liu, T. M. Lim, W. D. Zhang, and F. S. Sheu, Preparation and Characterization of Aligned Carbon Nanotube-Ruthenium Oxide Nanocomposites for Supercapacitors, Small, 1, 560-565 (2005).
  64. Y. G. Wang, H. Q. Li, and Y. Y. Xia, Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance, Adv. Mater., 18, 2619-2623 (2006).
  65. C. Zheng, L. Qi, M. Yoshio, and H. Wang, Cooperation of microand mesoporous carbon electrode materials in electric double-layer capacitors, J. Power Sources, 195, 4406-4409 (2010).
  66. J. Jiang, Q. Gao, K. Xia, and J. Hu, Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure, Microporous Mesoporous Mater., 118, 28-34 (2009).
  67. A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005).
  68. K.-P. Wang and H. Teng, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 44, 3218-3225 (2006).
  69. W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes, Adv. Energy Mater., 1, 382-386 (2011).
  70. Z. Ryu, J. Zheng, and M. Wang, Porous structure of PAN-based activated carbon fibers, Carbon, 36, 427-432 (1998).
  71. L. Marcinauskas, Z. Kavaliauskas, and V. Valincius, Carbon and nickel oxide/carbon composites as electrodes for supercapacitors, J. Mater. Technol., 28, 931-936 (2012).
  72. A. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-17 (2006).
  73. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrog. Energy, 34, 4889-4899 (2009).
  74. T. Kwon, H. Nishihara, H. Itoi, Q. H. Yang, and T. Kyotani, Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels, Langmuir, 25, 11961-11968 (2009).
  75. R. B. Rakhi and H. N. Alshareef, Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes, J. Power Sources, 196, 8858-8865 (2011).
  76. I. Shakir, M. Nadeem, M. Shahid, and D. J. Kang, Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes for High-performance Supercapacitor Electrodes, Electrochim. Acta, 118, 138-142 (2014).

Cited by

  1. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016,
  2. High conductivity electrospun carbon/graphene composite nanofiber yarns pp.00323888, 2017,