DOI QR코드

DOI QR Code

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology

  • Ahn, Hyun-Mo ;
  • Chung, Tae-Kyung ;
  • Oh, Yeon-Ho ;
  • Song, Ki-Dong ;
  • Kim, Young-Il ;
  • Kho, Heung-Ryeol ;
  • Choi, Myeong-Seob ;
  • Hahn, Sung-Chin
  • Received : 2013.10.23
  • Accepted : 2014.11.12
  • Published : 2015.05.01

Abstract

Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.

Keywords

Permanent magnetic actuators;Finite element analysis;Optimization methods;Permanent magnetic machines;Response surface method

References

  1. S.Fang, H.Lin, and S.L. Ho, “Transient Co-Simulation of Low Voltage Circuit Breaker with Permanent Magnet Actuator”, IEEE Trans. Mag., vol. 45, no. 3, pp. 1242-1245, Mar., 2009. https://doi.org/10.1109/TMAG.2009.2012579
  2. D. D. Shipp, T. J. Dionise, V. Lorch, and B. G. MacFarlane, “Transformer Failure Due to Circuit-Breaker-Induced Switching Transients”, IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 707-718, Mar./Apr., 2011. https://doi.org/10.1109/TIA.2010.2101996
  3. D. D. Shipp, T. J. Dionise, V. Lorch, and W. G. MacFarlane, “Vacuum Circuit Breaker Transients During Switching of an LMF Transformer”, IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 37-44, Jan./Feb., 2012. https://doi.org/10.1109/TIA.2011.2175430
  4. A. Iturregi, E. Torres, I. Zamora, and O. Abarrategui, "High Voltage Circuit Breaker: SF6 vs. Vacuum", in Proc. the 7nd Int. Conf. Renewable Energies and Power Quality 2009, pp. 1-6.
  5. K. N. Park, J. W. Son, and S. C. Hahn, "Dynamic Characteristic Analysis of Permanent Magnetic Actuators Coupled Electromagnetic-mechanical Finite Element Method", in Proc. 2010 International Conference on Electrical Machines and Systems, pp. 1706-1709.
  6. S. K. Hong, J. S. Ro, and H. K. Jung, “Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model”, J Electr. Eng. Technol., vol. 9, no. 2, pp. 471-477, Mar., 2014. https://doi.org/10.5370/JEET.2014.9.2.471
  7. A. Khuri and S. Mukhopadhyay, “Response Surface Methodology: Advanced Review”, WIREs Comp. Stat., vol. 2, no. 2, pp. 128-149, Mar./Apr., 2010. https://doi.org/10.1002/wics.73
  8. S. Fang, H. Lin, S. L. Ho, X. Wang, P. Jin, and H. Liu, “Characteristics Analysis and Simulation of Permanent Magnet Actuator with a New Control Method for Air Circuit Breaker”, IEEE Trans. Mag., vol. 45, no. 10, pp. 4566-4569, Oct., 2009. https://doi.org/10.1109/TMAG.2009.2024895
  9. J. R. Brauer, Magnetic actuators and sensors, Wiley-Interscience, 2006.
  10. D. K. Hong, B. C. Woo, D. H. Koo, and D. H. Kang, “Optimum Design of Transverse Flux Linear Motor for Weight Reduction and Improvement Thrust Force Using Response Surface Methodology”, IEEE Trans. Mag., vol. 44, no. 11, pp. 4317-4320, Nov., 2008. https://doi.org/10.1109/TMAG.2008.2002474
  11. D. K. Hong, B. C. Woo, and C. W. Ahn, “Optimum Design for Improvement of PM-type Longitudinal Flux Linear Motor Using the Statistical Methods”, International Journal of Modern Physics B, vol. 24, no. 15n16, pp. 2821-2826, Jun., 2010. https://doi.org/10.1142/S0217979210065696
  12. A. M. Omekanda, “Robust Torque and Torque-perinertia Optimization of a Switched Reluctance Motor using the Taguchi method”, IEEE Trans. Ind. Appl., vol. 42, no.2, pp. 473-478, Mar./Apr., 2006. https://doi.org/10.1109/TIA.2006.870031
  13. D. K. Hong, B. C. Woo, D. H Koo, and K. C. Lee, “Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications”, Sensors, vol. 10, no. 7, pp. 6718-6729, Jul., 2010. https://doi.org/10.3390/s100706718
  14. P. G. Slade, The vacuum interrupter - theory, design, and application, CRC Press, 2008.
  15. S.H. Khan, M. Cai, T.V. Grattan, K. Kajan, M. Honeywood, and S. Mills, “Computation of 3-D Magnetic Field Distribution in Long-Lifetime Electromagnetic Actuators”, IEEE Trans. Mag., vol. 43, no. 4, pp. 1161-1164, Apr., 2007. https://doi.org/10.1109/TMAG.2007.892277
  16. J. Xie, D. H. Kang, B. C. Woo, J. Y. Lee, Z. H. Sha, and S. D. Zhao, “Optimum Design of Transverse Flux Machine for High Contribution of Permanent Magnet to Torque Using Response Surface Methodology”, J Electr. Eng. Technol., vol. 7, no. 5, pp. 745-752, Sep., 2012. https://doi.org/10.5370/JEET.2012.7.5.745
  17. J. S. Ro, S. K. Hong, and H. K. Jung, “Characteristic Analysis and Design of a Novel Permanent Magnetic Actuator for a Vacuum Circuit Breaker”, Electric Power Applications, IET, vol. 7, no. 2, pp. 87-96, Feb., 2013. https://doi.org/10.1049/iet-epa.2012.0176
  18. G. E. P. Box, J. S. Hunter, and J. S. Hunter, Statistics for Experimenters: Design Innovation, and Discovery, Wiley-Interscience, 2005.
  19. H. M. Hasanien, A. S. Abd-Rabou, and S. M. Sakr, “Design Optimization of Transverse Flux Linear Motor for Weight Reduction and Performance Improvement Using Response Surface Methodology and Genetic Algorithms”, IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 598-605, Sep., 2010. https://doi.org/10.1109/TEC.2010.2050591

Cited by

  1. Comparative Study of Stator Configurations of a Permanent Magnet Linear Oscillating Actuator for Orbital Friction Vibration Actuator vol.7, pp.6, 2017, https://doi.org/10.3390/app7060630