DOI QR코드

DOI QR Code

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil

초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응

Park, Jeesu;Kim, Jae-Young;Choi, Joon Weon
박지수;김재영;최준원

  • Received : 2014.10.28
  • Accepted : 2014.12.10
  • Published : 2015.05.25

Abstract

Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.

Keywords

lignin;depolymerization;supercritical ethanol;Ru/C;phenols

References

  1. Amen-Chen, C., Pakdel, H., Roy, C. 2001. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Techonology 79: 277-299. https://doi.org/10.1016/S0960-8524(00)00180-2
  2. Brands, D., Poels, E., Dimian, A., Bliek, A. 2002. Solvent-based fatty alcohol synthesis using supercritical butane. Thermodynamic analysis. American Oil Chemists' Society 79: 75-83. https://doi.org/10.1007/s11746-002-0438-1
  3. Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
  4. Dence, C.W. 1992. The determination of lignin. Methods in lignin chemistry. Springer Berlin Heidelberg 33-61.
  5. Fan, M., Jiang, P., Bi, P., Deng, S., Yan, L., Zhai, Q., Wang, T., Li, Q. 2013. Directional synthesis of ethylbenzene through catalytic transformation of lignin. Bioresource Technology 143: 59-67. https://doi.org/10.1016/j.biortech.2013.05.097
  6. Fang, Z., Sato, T., Smith Jr, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99: 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
  7. Gosselink, R.J.A., Teunissen, W., van Dam, J.E.G., de Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P.M. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177. https://doi.org/10.1016/j.biortech.2011.11.121
  8. Gutierrez, A., Kaila, R., Honkela, M., Slioor, R., Krause, A. 2009. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today 147: 239-246. https://doi.org/10.1016/j.cattod.2008.10.037
  9. Holmelid, B., Kleinert, M., Barth, T. 2012. Reactivity and reaction pathways in thermochemical treatment of selected lignin-like model compounds under hydrogen rich conditions. Journal of Analytical and Applied Pyrolysis 98(0): 37-44. https://doi.org/10.1016/j.jaap.2012.03.007
  10. Kim, S., Dale, B.E. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
  11. Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-S., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93: 1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
  12. Kim, J.-Y., Park, J., Kim, J.K., Song, I.K., Choi, J.W. 2014. Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical t-butanol. Journal of Analytical and Applied Pyrolysis, Accepted.
  13. Lapierre, C. 2010. Determining lignin structure by chemical degradations. Lignin and Lignins: Advanced in chemistry. Heitner C., Dimmel D., Schmidt J.A. 11. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  14. Li, H., Yuan, X., Zeng, G., Tong, J., Yan, Y., Cao, H. 2009. Liquefaction of rice straw in sub-and supercritical 1, 4-dioxane-water mixture. Fuel Processing Technology 90: 657-663. https://doi.org/10.1016/j.fuproc.2008.12.003
  15. Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology 154: 10-17. https://doi.org/10.1016/j.biortech.2013.12.020
  16. Lu F., Ralph J. 1997. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. Agricultural and Food Chemistry 45(7): 2590-2592. https://doi.org/10.1021/jf970258h
  17. Pandey, M.P., Kim, C.S. 2011. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology 34(1): 29-41. https://doi.org/10.1002/ceat.201000270
  18. Regauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Rederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  19. Tan, H.T., Lee, K.T. 2012. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chemical Engineering 183: 448-458. https://doi.org/10.1016/j.cej.2011.12.086
  20. Vazquez, G., Antorrena, G., Gonzalez, J., Freire, S. 1997. The influencing of pulping conditions on the structure of acetosolv eucalyptus lignins. Wood Chemistry and Technology 17(1 and 2): 147-162. https://doi.org/10.1080/02773819708003124
  21. Yoshikawa, T., Yagi, T., Shinohara, S., Fukunaga, T., Nakasaka, Y., Tago, T., Masuda, T. 2013. Production of phenols from lignin via depolymerization and catalytic cracking. Fuel Processing Technology 108: 69-75. https://doi.org/10.1016/j.fuproc.2012.05.003
  22. Wild, De., P.J., Huijgen, W.J.J., Heeres, H.J. 2012. Pyrolysis of wheat straw-derived organosolve lignin. Journal of analytical and applied pyrolysis 93: 95-103. https://doi.org/10.1016/j.jaap.2011.10.002

Acknowledgement

Supported by : 산림청, 한국연구재단