DOI QR코드

DOI QR Code

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie (Department of Building Engineering, Tongji University) ;
  • Frangopol, Dan M. (Department of Civil and Environmental Engineering, ATLSS Engineering Research Center, Lehigh University) ;
  • Soliman, Mohamed (Department of Civil and Environmental Engineering, ATLSS Engineering Research Center, Lehigh University)
  • Received : 2014.05.14
  • Accepted : 2014.11.15
  • Published : 2015.05.25

Abstract

This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.

References

  1. ABAQUS (2010), ABAQUS Analysis user's manual (version 6.10); Dassault Systemes Simulia Corp., Providence, RI, USA.
  2. Amadio, C. and Fragiacomo, M. (1997), "Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams", J. Struct. Eng., 123(5), 1153-1162. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153)
  3. Amadio, C., Fragiacomo, M. and Macorini, L. (2012), "Evaluation of the deflection of steel-concrete composite beams at serviceability limit state", J. Construct. Steel Res., 73, 95-104. https://doi.org/10.1016/j.jcsr.2012.01.009
  4. ANSYS (2012), ANSYS Mechanical user guide (version 14.5); ANSYS Inc., Canonsburg, PA, USA.
  5. Bazant, Z.P. (1072), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69, 212-217.
  6. Bazant, Z.P. (1988), Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley & Sons Ltd., New York, NY, USA.
  7. Bazant, Z.P. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures-Model B3", Mater. Struct., 28(6), 357-365. https://doi.org/10.1007/BF02473152
  8. Bazant, Z.P. (2001), "Prediction of concrete creep and shrinkage: past, present and future", Nucl. Eng. Des., 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5
  9. CEB-FIP (1990), CEB-FIP model code 1990: Design code 1994; Thomas Telford, London, UK.
  10. Dezi, L. and Gara, F. (2006), "Construction sequence modelling of continuous steel-concrete composite bridge decks", Steel Compos. Struct., Int. J., 6(2), 123-138. https://doi.org/10.12989/scs.2006.6.2.123
  11. Duff, I.S., Erisman, A.M. and Reid, J.K. (1986), Direct Methods for Sparse Matrices, Clarendon Press, Oxford, UK.
  12. Erkmen, R.E. and Saleh, A. (2012), "Eccentricity effects in finite element modelling of composite beams", Adv. Eng. Software, 52, 55-59. https://doi.org/10.1016/j.advengsoft.2012.06.004
  13. Erkmen, R.E., Bradford, M.A. and Crews, K. (2012), "Variational multiscale approach to enforce perfect bond in multiple-point constraint applications when forming composite beams", Computat. Mech., 49(5), 617-628. https://doi.org/10.1007/s00466-011-0667-5
  14. Eurocode 4 (2005), Design of composite steel and concrete structures - Part 2: Rules for bridges; EN1994-2:2005, Brussels, Belgium.
  15. Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finite-element model for collapse and long-term analysis of steel-concrete composite beams", J. Struct. Eng., 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
  16. Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep and normal-strength concrete", ACI Mater. J., 98(2), 159-167.
  17. Gilbert, R.I. (1989), "Time-dependent analysis of composite steel-concrete sections", J. Struct. Eng., 115(11), 2687-2705. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687)
  18. Gilbert, R.I. and Bradford, M.A. (1995), "Time-dependent behavior of continuous composite beams at service loads", J. Struct. Eng., 121(2), 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
  19. Gupta, A.K. and Paul, S.M. (1977), "Error in eccentric beam formulation", Int. J. Numer. Method. Eng., 11(9), 1473-1483. https://doi.org/10.1002/nme.1620110910
  20. Jelenic, G. and Crisfield, M.A. (1986), "Non-linear master-slave relationships for joints in 3D beams with large rotations", Comput. Method. Appl. Mech. Eng., 135(3-4), 211-228. https://doi.org/10.1016/0045-7825(96)01017-1
  21. Jurkiewiez, B., Buzon, S. and Sieffert, J.G. (2005), "Incremental viscoelastic analysis of composite beams with partial interaction", Comput. Struct., 83(21-22), 1780-1791. https://doi.org/10.1016/j.compstruc.2005.02.021
  22. Kwak, H.G., Seo, Y.J. and Jung, C.M. (2000), "Effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behavior of composite steel box girder bridges", Eng. Struct., 23(11), 1453-1480. https://doi.org/10.1016/S0141-0296(01)00048-7
  23. Lin, B.Z., Chuang, M.C. and Tsai, K.C. (2009), "Object-oriented development and application of a nonlinear structural analysis framework", Adv. Eng. Software, 40(1), 66-82. https://doi.org/10.1016/j.advengsoft.2008.03.012
  24. Liu, X.P., EmreErkmen, R.E. and Bradford, M.A. (2012), "Creep and shrinkage analysis of curved composite beams with partial interaction", Int. J. Mech. Sci., 58(1), 57-68. https://doi.org/10.1016/j.ijmecsci.2012.03.001
  25. Lv, J., Wu, J., Luo, X.Q. and Zhang, Q.L. (2013), "Time-dependent analysis of steel-reinforced concrete structures", Struct. Des. Tall Spec. Build., 22(15), 1186-1198. https://doi.org/10.1002/tal.1079
  26. Mari, A., Mirambell, E. and Estrada, I. (2003), "Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges", J. Construct. Steel Res., 59(2), 135-163. https://doi.org/10.1016/S0143-974X(02)00029-9
  27. Munoz, J. and Jelenic, G. (2006), "Sliding joints in 3D beams: conserving algorithms using the master-slave approach", Multibody Syst. Dyn., 16(3), 237-261. https://doi.org/10.1007/s11044-006-9025-3
  28. Murthy, A.R.C., Palani, G.S. and Iyer, N.R. (2011), "Object-oriented programming paradigm for damage tolerant evaluation of engineering structural components", Adv. Eng. Software, 42(1-2), 12-24. https://doi.org/10.1016/j.advengsoft.2010.10.012
  29. ObjectARX (2008), ObjectARX Developer's Guide for AutoCAD 2008; San Rafael, Autodesk Inc.
  30. Pedro, J.J.O. and Reis, A.J. (2010), "Nonlinear analysis of composite steel-concrete cable-stayed bridges", Eng. Struct., 32(9), 2702-2716. https://doi.org/10.1016/j.engstruct.2010.04.041
  31. Phongthanapanich, S. and Dechaumphai, P. (2006), "EasyFEM - An object-oriented graphics interface finite element/finite volume software", Adv. Eng. Software, 37(12), 797-804. https://doi.org/10.1016/j.advengsoft.2006.05.006
  32. Ranzi, G., Bradford, M.A. and Uy, B. (2004), "A direct stiffness analysis of a composite beam with partial interaction", Int. J. Numer. Method. Eng., 61(5), 657-672. https://doi.org/10.1002/nme.1091
  33. Smerda, Z. and Kristek, V. (1988), Creep and Shrinkage of Concrete Elements and Structures, Elsevier, Amsterdam, Netherlands.
  34. Tehami, M. and Ramdane, K.E. (2009), "Creep behaviour modelling of a composite steel-concrete section", J. Construct. Steel Res., 65(5), 1029-1033. https://doi.org/10.1016/j.jcsr.2009.01.001

Cited by

  1. Improved step-by-step modeling method for analyzing the mechanical behavior of steel structures during construction 2018, https://doi.org/10.1177/1369433217753694