Recent R&D status on friction stir welding of Ti and its alloys

티타늄과 그 합금의 마찰교반용접기술 현황

  • Received : 2015.04.14
  • Accepted : 2015.04.22
  • Published : 2015.04.30


This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.


Titanium;Friction stir welding;Mechanical property;Microstructure


  1. W. M. Thomas, friction stir butt welding, Int. Patent No PCT/GB92/02203 (1991)
  2. A. Nouri, X. Chen, Y. Li, Y. Yamada, P. Hodgson, C. Wen, Mater. Sci. Eng. A, 485 (2008) 562-570
  3. Y. Abe, The Possibility of Developing The Cost Reduction Metallurgy on Titanium Materials, Iron Steel Inst. Japan, (1997) 3-7
  4. D. Kang, N. Koga, M. Sakata, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A, 606(2014)101-107
  5. B. Yoon, S. Kim, W. Chang, Journal of KWJS, 25 (2007) 22-28
  6. D. Kang, K. Lee, E. Kwon, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A. 632 (2015) 120-126
  7. C. Chun, S. Kim, H. Kim, W. Chang, J. Noh, Journal of KWJS 31 (2013) 16-20
  8. PUZQQ
  9. S. Mironov, Y. Sato, H. Kokawa, Acta Mater. 57 (2009) 4519-4528
  10. S. Mironov, Y. Zhang, Y. Sato, H. Kokawa, Scripta Mater. 59 (2008) 27-30
  11. L. Zhou, H. Liu, Mater. Char. 62 (2011) 1036-1041
  12. G. Buffa, A. Ducato, L. Frantini, Mater. Sci. Eng. A, 581 (2013) 56-65
  13. H. Fujii, Y. Sun, H. Kato, K. Nakata, Mater. Sci. Eng. A. 527 (2010) 3386-3391
  14. P. Edwards, M. Ramulu, J. Mater. Proc. Tech. 218 (2015) 107-115
  15. M. Esmaily, S. Nooshin Mortazavi, P. Todehfalah, M. Rashidi, Mater. Des. 47 (2013) 143-150
  16. S. Mironov, Y. Sato, H. Kokawa, Mater. Sci. Eng. A, 527 (2010) 7498-7504
  17. R. Fonda, K. Knipling, Acta Mater. 58 (2010) 6452-6463
  18. M. Mahoney, R. Mishra, Friction stir welding and processing, ASM international, (2007)
  19. A. J. Ramirez, M.C.Juhas, Mater. Sci. Forum 426-432 (2003) 2999


Grant : 강소성가공에 의한 개질방법을 이용한 저비용 금형기술 개발(1/1)