DOI QR코드

DOI QR Code

Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

  • Vu, T.K.V. ;
  • Vu, D.Q. ;
  • Jensen, L.S. ;
  • Sommer, S.G. ;
  • Bruun, S.
  • Received : 2014.09.04
  • Accepted : 2014.11.20
  • Published : 2015.05.01

Abstract

Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide ($CO_2$) equivalents to 3.2 kg $CO_2$ equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required.

Keywords

Manure;Digestate;Methane;Global Warming;Euthrophication

References

  1. Department of Livestock Production. 2010. Vietnam part of annual report of the Asia biogas program. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
  2. Department of Livestock Production. 2013. Commercial feed production in Vietnam. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
  3. Dhingra, R., E. R. Christensen, Y. Liu, B. Zhong, C. F. Wu, M. G. Yost, and J. V. Remais. 2011. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China. Environ. Sci. Technol. 45:2345-2352. https://doi.org/10.1021/es103142y
  4. Eastern Research Group. 2010. PA Consulting Group, and International Institute for Energy Conservation, Resource assessment report for livestock and agro-industrial wastes - Vietnam. Methane to Markets Partnership, Hanoi, Vietnam.
  5. Eggleston, S., L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. 2006. IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies. Hayama, Japan.
  6. European Commission. 2010. Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook-General guide for Life Cycle Assessment-Detailed guidance. 1st edn, March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union.
  7. Flesch, T. K., R. L. Desjardins, and D. Worth. 2011. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenerg. 35:3927-3935. https://doi.org/10.1016/j.biombioe.2011.06.009
  8. Goedkoop, M., R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. van Zelm. 2009. ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Environmental Agency, Amersfoort, the Netherlands.
  9. Hamelin, L., M. Wesnes, H. Wenzel, and B. M. Petersen. 2011. Environmental consequences of future biogas technologies based on separated slurry. Environ. Sci. Technol. 45:5869-5877. https://doi.org/10.1021/es200273j
  10. Hjorth, M., K. V. Christensen, M. L. Christensen, and S. G. Sommer. 2010. Solid liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 30:153-180. https://doi.org/10.1051/agro/2009010
  11. Huang, S., Y. Ma, D. Bao, D. Guo, and S. Zhang. 2011. Manures behave similar to superphosphate in phosphorus accumulation in long-term field soils. Int. J. Plant Prod. 5:135-146.
  12. Huijsmans, J. F. M., J. M. G. Hol, and G. D. Vermeulen. 2003. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 37:3669-3680. https://doi.org/10.1016/S1352-2310(03)00450-3
  13. ISO, 2006a. ISO 14044. Environmental management-Life cycle assessment-Requirements and guidelines. International Organisation for Standardisation, Geneva, Switzerland.
  14. ISO, 2006b. ISO 14040. Environmental management-Life cycle assessment-Principles and framework. International Organisation for Standardisation, Geneva, Switzerland.
  15. Bruun, S., L. S. Jensen, V. T. Khanh Vu, and S. G. Sommer. 2014. Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev. 33:736-41. https://doi.org/10.1016/j.rser.2014.02.033
  16. Chantigny, M. H., D. A. Angers, P. Rochette, G. Belanger, D. Masse, and D. Cote. 2007. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J. Environ. Qual. 36:1864-72. https://doi.org/10.2134/jeq2007.0083
  17. Chen, S., B. Chen, and D. Song. 2012. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour. Technol. 114:357-364. https://doi.org/10.1016/j.biortech.2012.03.084
  18. Cooper, P. 1999. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci. Technol. 40:1-9.
  19. Costales, A., P. Gerber, and H. Steinfeld. 2006. Underneath the livestock revolution. Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy.
  20. De Vries, J. W., T. M. W. J. Vinken, L. Hamelin, and I. J. M. de Boer. 2012. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy-A life cycle perspective. Bioresour. Technol. 125:239-248. https://doi.org/10.1016/j.biortech.2012.08.124
  21. Delin, S., B. Stenberg, A. Nyberg, and L. Brohede. 2012. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use Manag. 28:283-291. https://doi.org/10.1111/j.1475-2743.2012.00417.x
  22. Wang C. B. and L. X. Zhang. 2012. Life cycle assessment of carbon emission from a household biogas digester: Implications for policy. Procedia Environ. Sci. 13:778-789. https://doi.org/10.1016/j.proenv.2012.01.071
  23. Watanabe, T., T. T. Son, N. N. Hung, N. Van Truong, T. Q. Giau, K. Hayashi, and O. Ito. 2009. Measurement of ammonia volatilization from flooded paddy fields in Vietnam. Soil Sci. Plant Nutr. 55:793-799. https://doi.org/10.1111/j.1747-0765.2009.00419.x
  24. Webb, J., S. G. Sommer, T. Kupper, K. Groenestein, N. J. Hutchings, B. Eurich-Menden, L. Rodhe, T. Misselbrook, and B. Amon. 2012. Emissions of ammonia, nitrous oxide and methane during the management of solid manures. In: Agroecology and Strategies for Climate Change (Ed. E. Lichtfouse). Springer, Dordrecht, the Netherlands. pp. 67-107.
  25. Yu, L., K. Yaoqiu, H. Ningsheng, W. Zhifeng, and X. Lianzhong. 2008. Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renew. Energy 33:2027-2035. https://doi.org/10.1016/j.renene.2007.12.004
  26. Zhang, J., K. R. Smith, Y. Ma, S. Ye, F. Jiang, W. Qi, P. Liu, M. A. K. Khalil, R. A. Rasmussen, and S. A. Thorneloe. 2000. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos. Environ. 34:4537-4549. https://doi.org/10.1016/S1352-2310(99)00450-1
  27. Velthof, G. L., J. A. Nelemans, O. Oenema, and P. J. Kuikman. 2005. Gaseous nitrogen and carbon losses from pig manure derived from different diets. J. Environ. Qual. 34:698-706. https://doi.org/10.2134/jeq2005.0698
  28. Vu, D. Q., A. D. Neergaard, D. T. Tran, T. T. H. Hoang, and T. K. V. Vu. 2014. The effect of biochar and different crop residues on greenhouse gas emissions during passive aeration composting of manure and digestate typical of small-scale livestock farms in Vietnam. Environ. Technol. http://dx.doi.org/10.1080/09593330.2014.960475 https://doi.org/10.1080/09593330.2014.960475
  29. Vu, Q., T. Tran, P. Nguyen, C. Vu, V. Vu, and L. Jensen. 2012a. Effect of biogas technology on nutrient flows for small- and medium-scale pig farms in Vietnam. Nutr. Cycl. Agroecosyst. 94:1-13. https://doi.org/10.1007/s10705-012-9516-y
  30. Vu, T. K. V. and X. T. Dinh. 2012b. Survey on ompact assessment of climate change on livestock production. Ministry of Agriculture and Rural Development, Hanoi, Vietnam.
  31. Vu, T. K. V., C. C. Vu, J. M. Medoc, M. R. Flindt, and S. G. Sommer. 2012c. Management model for assessment of nitrogen flow from feed to pig manure after storage in Vietnam. Environ. Technol. 33:725-731. https://doi.org/10.1080/09593330.2011.592223
  32. Vu, T. K. V., M. T. Tran, and T. T. S. Dang. 2007. A survey of manure management on pig farms in Northern Vietnam. Livest. Sci. 112:288-297. https://doi.org/10.1016/j.livsci.2007.09.008
  33. Vu, T. K. V., T. Prapaspongsa, H. D. Poulsen, and H. Jorgensen. 2009. Prediction of manure nitrogen and carbon output from grower-finisher pigs. Anim. Feed Sci. Technol. 151:97-110. https://doi.org/10.1016/j.anifeedsci.2008.10.008
  34. Vu, V. T. K., B. N. Tran, D. Q. Vu, H. C. Pham, C. C. Vu, L. S. Jensen, S. G. Sommer, and P. D. Le. 2012d. Effects of dietary crude protein and crude fiber levels on N and P excretion, hydrogen sulfide, ammonia and greenhouse gases emission from slurry of growing pigs between 30-60 kg. AAAP conference, 2012, Bangkok, Thailand.
  35. Uggetti, E., I. Ferrer, E. Llorens, and J. Garcia. 2010. Sludge treatment wetlands: A review on the state of the art. Bioresour. Technol. 101:2905-2912. https://doi.org/10.1016/j.biortech.2009.11.102
  36. UNFCCC/CCNUCC. 2012. Methodological Tool "Project and leakage emissions from anaerobic digesters" (Version 01.0.0). EB 66 Report Annex 32. CDM Executive Board.
  37. Schulte, E. E. and B. G. Hopkins. 1996. Estimation of organic matter by weight loss-onignition. In: Soil Organic Matter: Analysis and Interpretation (Eds. F. R. Magdoff, M. A. Tabatabai, and E. A. Hanlon). SSSA Special Publication 46. Madison, WI, USA. pp. 21-31.
  38. Smith, K. R., R. Uma, V. V. N. Kishore, K. L .V. Joshi, J. Zhang, R. A. Rasmussen, and M. A. K. Khalil. 2000. Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa. Household stoves in India. United States Environmental Protection Agency. Washington, DC, USA. pp. 1-89.
  39. SNV-VN, 2012. Domestic biogas technology training handbook. Biogas program for animal husbandry sector in Vietnam. Program supported by Netherlands Development Organisation. http://biogas.org.vn/english/An-pham.aspx Accessed 03 August, 2013.
  40. Sogaard, H. T., S. G. Sommer, N. J. Hutchings, J. F. M. Huijsmans, D. W. Bussink, and F. Nicholson. 2002. Ammonia volatilization from field-applied animal slurry-the ALFAM model. Atmos. Environ. 36:3309-3319. https://doi.org/10.1016/S1352-2310(02)00300-X
  41. Sommer, S. G. and N. J. Hutchings. 2001. Ammonia emission from field applied manure and its reduction-invited paper. Eur. J. Agron. 15:1-15. https://doi.org/10.1016/S1161-0301(01)00112-5
  42. Sommer, S. G., J. K. Schjoerring, and O. T. Denmead. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 82:557-622. https://doi.org/10.1016/S0065-2113(03)82008-4
  43. Sommer, S. G., R. R. Sherlock, and R. Z. Khan. 1996. Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biol. Biochem. 28:1541-1544. https://doi.org/10.1016/S0038-0717(96)00146-0
  44. Sommer, S. G., S. O. Petersen, P. Sorensen, H. D. Poulsen, and H. B. Moller. 2007. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycl. Agroecosyst. 78:27-36. https://doi.org/10.1007/s10705-006-9072-4
  45. ten Hoeve, M., N. J. Hutchings, G. M. Peters, M. Svanstrom, L. S. Jensen, and S. Bruun. 2013. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. J. Environ. Manag. 132:60-70.
  46. Thien Thu, C. T., P. H. Cuong, L. T. Hang, N. V. Chao, L. X. Anh, N. X. Trach, and S. G. Sommer. 2012. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example. J. Clean. Prod. 27:64-71. https://doi.org/10.1016/j.jclepro.2012.01.006
  47. Thomsen, I. K., J. E. Olesen, H. B. Moller, P. Sorensen, and B. T. Christensen. 2013. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 58:82-87. https://doi.org/10.1016/j.soilbio.2012.11.006
  48. Tran, M. T., H. H. Bui, J. Luxhoi, and L. S. Jensen. 2012. Application rate and composting method affect the immediate and residual manure fertilizer value in a maize-rice-rice-maize cropping sequence on a degraded soil in northern Vietnam. Soil Sci. Plant Nutr. 58:206-23. https://doi.org/10.1080/00380768.2012.661692
  49. Tran, M. T., T. K. V. Vu, S. G. Sommer, and L. S. Jensen. 2011. Nitrogen turnover and loss during storage of slurry and composting of solid manure under typical Vietnamese farming conditions. J. Agric. Sci. 149:285-296. https://doi.org/10.1017/S0021859610000699
  50. Losak, T., A. Zatloukalova, M. Szostkova, J. Hlusek, J. Fryc, and T. Vitez. 2011. Comparison of the effectiveness of digestate and mineral fertilizer on yields and quality of kohlrabi (Brassica Oleraces, L.). Acta Univ. Agric. et Silvic. Mend. Brun. 3:117-122.
  51. Mai, V. T., H. van Kaulen, and R. Roetter. 2010. Nitrogen leaching in intensive cropping systems in Tan Duong Dristrict, Red River Delta of Vietnam. Water Air Soil Pollut. 210:15-31. https://doi.org/10.1007/s11270-009-0219-1
  52. Montes, F., C. A. Rotz, and H. Chaoui. 2009. Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models. Trans. ASAE 52:1707-1720. https://doi.org/10.13031/2013.29133
  53. Olesen, J. E. and S. G. Sommer. 1993. Modelling effects of wind speed and surface cover on ammonia volatilization from stored pig slurry. Atmos. Environ. 27:2567-2574. https://doi.org/10.1016/0960-1686(93)90030-3
  54. Park, J. B. K., R. J. Craggs, and A. N. Shilton. 2013. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds. Water Res. 47:4904-4917. https://doi.org/10.1016/j.watres.2013.05.027
  55. Pei-dong, Z., J. Guomei, and W. Gang. 2007. Contribution to emission reduction of $CO_{2}$ and $SO_{2}$ by household biogas construction in rural China. Renew. Sustain. Energy Rev. 11:1903-1912. https://doi.org/10.1016/j.rser.2005.11.009
  56. Poeschl, M., S. Ward, and P. Owende. 2012a. Environmental impacts of biogas deployment - Part I: life cycle inventory for evaluation of production process emissions to air. J. Clean. Prod. 24:168-183. https://doi.org/10.1016/j.jclepro.2011.10.039
  57. Poeschl, M., S. Ward, and P. Owende. 2012b. Environmental impacts of biogas deployment - Part II: life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 24:184-201. https://doi.org/10.1016/j.jclepro.2011.10.030
  58. Prapaspongsa, T., P. Christensen, J. H. Schmidt, and M. Thrane. 2010. LCA of comprehensive pig manure management incorporating integrated technology systems. J. Clean. Prod. 18:1413-1422. https://doi.org/10.1016/j.jclepro.2010.05.015
  59. Rajendran, K., S. Aslanzadeh, and M. J. Taherzadeh. 2012. Household biogas digesters-A review. Energies 5:2911-2942. https://doi.org/10.3390/en5082911
  60. Rehl, T. and J. Muller. 2011. Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 56:92-104. https://doi.org/10.1016/j.resconrec.2011.08.007
  61. Sandars, D. L., E. Audsley, C. Canete, T. R. Cumby, I. M. Scotford, and A. G. Williams. 2003. Environmental benefits of livestock manure management practices and technology by life cycle assessment. Biosyst. Eng. 84:267-281. https://doi.org/10.1016/S1537-5110(02)00278-7
  62. Schroder, J. J., D. Uenk, and G. J. Hilhorst. 2007. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83-99. https://doi.org/10.1007/s11104-007-9365-7
  63. Johnston, A. E., P. R. Poulton, and K. Coleman. 2009. Soil organic matter: Its Importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 101:1-57. https://doi.org/10.1016/S0065-2113(08)00801-8
  64. Kapdi, S. S., V. K. Vijay, S. K. Rajesh, and R. Prasad. 2005. Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renew. Energy 30:1195-1202. https://doi.org/10.1016/j.renene.2004.09.012

Cited by

  1. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment pp.1096-3669, 2017, https://doi.org/10.1177/0734242X17721341
  2. SO2 and H2S Sensing Properties of Hydrothermally Synthesized CuO Nanoplates pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6648-0
  3. Developing zero-discharge pig-farming system: a feasibility study in Malaysia vol.57, pp.8, 2017, https://doi.org/10.1071/AN15669