Molecular Analysis of Alternative Transcripts of the Equine Cordon-Bleu WH2 Repeat Protein-Like 1 (COBLL1) Gene

  • Park, Jeong-Woong (Department of Animal Science, College of Natural Resources and Life Science, Pusan National University) ;
  • Jang, Hyun-Jun (College of Pharmacy, Dankook University) ;
  • Shin, Sangsu (Department of Animal Science, College of Natural Resources and Life Science, Pusan National University) ;
  • Cho, Hyun-Woo (Department of Animal Science, College of Natural Resources and Life Science, Pusan National University) ;
  • Choi, Jae-Young (Department of Animal Science, College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Nam-Young (Subtropical Animal Experiment Station, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University) ;
  • Do, Kyong-Tak (Department of Equine Sciences, Sorabol College) ;
  • Song, Ki-Duk (Genomic Informatics Center, Hankyong National University) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Natural Resources and Life Science, Pusan National University)
  • Received : 2014.09.16
  • Accepted : 2015.01.26
  • Published : 2015.06.01


The purpose of this study was to investigate the alternative splicing in equine cordon-bleu WH2 repeat protein-like 1 (COBLL1) gene that was identified in horse muscle and blood leukocytes, and to predict functional consequences of alternative splicing by bioinformatics analysis. In a previous study, RNA-seq analysis predicted the presence of alternative spliced isoforms of equine COBLL1, namely COBLL1a as a long form and COBLL1b as a short form. In this study, we validated two isoforms of COBLL1 transcripts in horse tissues by the real-time polymerase chain reaction, and cloned them for Sanger sequencing. The sequencing results showed that the alternative splicing occurs at exon 9. Prediction of protein structure of these isoforms revealed three putative phosphorylation sites at the amino acid sequences encoded in exon 9, which is deleted in COBLL1b. In expression analysis, it was found that COBLL1b was expressed ubiquitously and equivalently in all the analyzed tissues, whereas COBLL1a showed strong expression in kidney, spinal cord and lung, moderate expression in heart and skeletal muscle, and low expression in thyroid and colon. In muscle, both COBLL1a and COBLL1b expression decreased after exercise. It is assumed that the regulation of COBLL1 expression may be important for regulating glucose level or switching of energy source, possibly through an insulin signaling pathway, in muscle after exercise. Further study is warranted to reveal the functional importance of COBLL1 on athletic performance in race horses.


Horse;COBLL1;Alternative Splicing;Athletic Performance;Muscle;RNA-seq


Supported by : Rural Development Administration


  1. Albrechtsen, A., N. Grarup, Y. Li, T. Sparso, G. Tian, H. Cao, T. Jiang, S. Y. Kim, T. Korneliussen, and Q. Li et al. 2013. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia 56:298-310.
  2. Borghouts, L. B. and H. A. Keizer. 2000. Exercise and insulin sensitivity: A review. Int. J. Sports Med. 21:1-12.
  3. Carroll, E. A., D. Gerrelli, S. Gasca, E. Berg, D. R. Beier, A. J. Copp, and J. Klingensmith. 2003. Cordon-bleu is a conserved gene involved in neural tube formation. Dev. Biol. 262:16-31.
  4. Desmarchelier, C., J. C. Martin, R. Planells, M. Gastaldi, M. Nowicki, A. Goncalves, R. Valero, D. Lairon, and P. Borel. 2014. The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J. Clin. Endocrinol. Metab. 99:E484-488.
  5. Fuchs, S. Y., L. Dolan, R. J. Davis, and Z. Ronai. 1996. Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13:1531-1535.
  6. Gardina, P. J., T. A. Clark, B. Shimada, M. K. Staples, Q. Yang, J. Veitch, A. Schweitzer, T. Awad, C. Sugnet, S. Dee, C. Davies, A. Williams, and Y. Turpaz. 2006. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7:325.
  7. Goodyear, L. J. and B. B. Kahn. 1998. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 49:235-261.
  8. Gordon, G. J., R. Bueno, and D. J. Sugarbaker. 2011. Genes associated with prognosis after surgery for malignant pleural mesothelioma promote tumor cell survival in vitro. BMC Cancer 11:169.
  9. Gu, J., N. Orr, S. D. Park, L. M. Katz, G. Sulimova, D. E. MacHugh, and E. W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4(6):e5767.
  10. Huang, X., Y. Guo, Y. Shui, S. Gao, H. Yu, H. Cheng, and R. Zhou. 2005. Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol. Reprod. 73:1017-1024.
  11. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
  12. Lynch, K. W. 2007. Regulation of alternative splicing by signal transduction pathways. Adv. Exp. Med. Biol. 623:161-174.
  13. Magnani, M., R. Crinelli, M. Bianchi, and A. Antonelli. 2000. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB). Curr. Drug Targets 1:387-399.
  14. Mancina, R. M., M. A. Burza, C. Maglio, C. Pirazzi, F. Sentinelli, M. Incani, T. Montalcini, A. Pujia, T. Congiu, S. Loche, S. Pilia, O. Wiklund, J. Boren, S. Romeo, and M. G. Baroni. 2013. The COBLL1 C allele is associated with lower serum insulin levels and lower insulin resistance in overweight and obese children. Diabetes Metab. Res. Rev. 29:413-416.
  15. Manning, A. K., M. F. Hivert, R. A. Scott, J. L. Grimsby, N. Bouatia-Naji, H. Chen, D. Rybin, C. T. Liu, L. F. Bielak, and I. Prokopenko et al. 2012. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44:659-669.
  16. Nagase, T., K. Ishikawa, M. Suyama, R. Kikuno, M. Hirosawa, N. Miyajima, A. Tanaka, H. Kotani, N. Nomura, and O. Ohara. 1999. Prediction of the coding sequences of unidentified human genes. XIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6:63-70.
  17. Park, K. D., J. Park, J. Ko, B. C. Kim, H. S. Kim, K. Ahn, K. T. Do, H. Choi, H. M. Kim, S. Song, S. Lee, S. Jho, H. S. Kong, Y. M. Yang, B. H. Jhun, C. Kim, T. H. Kim, S. Hwang, J. Bhak, H. K. Lee, and B. W. Cho. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13:473.
  18. Rost, B., G. Yachdav, and J. Liu. 2004. The PredictProtein server. Nucl. Acids Res. 32:W321-326.
  19. Shin, C. and J. L. Manley. 2004. Cell signalling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell Biol 5:727-738.
  20. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
  21. Treier, M., L. M. Staszewski, and D. Bohmann. 1994. Ubiquitindependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787-798.
  22. Vitale, A. T., M. Pedroza-Seres, V. Arrunategui-Correa, S. J. Lee, S. DiMeo, C. S. Foster, and R. B. Colvin. 1994. Differential expression of alternatively spliced fibronectin in normal and wounded rat corneal stroma versus epithelium. Invest. Ophthalmol. Vis. Sci. 35:3664-3672.