DOI QR코드

DOI QR Code

Identification and characteristics of DDX3 gene in the earthworm, Perionyx excavatus

팔딱이 지렁이(Perionyx excavatus) DDX3 유전자의 동정 및 특성

  • 박상길 (중앙대학교 생명과학과) ;
  • 배윤환 (대진대학교 생명과학과) ;
  • 박순철 (중앙대학교 생명과학과)
  • Received : 2015.03.16
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

Helicases are known to be a proteins that use the chemical energy of NTP binding and hydrolyze to separate the complementary strands of double-stranded nucleic acids to single-stranded nucleic acids. They participate in various cellular metabolism in many organisms. DEAD-box proteins are ATP-dependent RNA helicase that participate in all biochemical steps involving RNA. DEAD-box3 (DDX3) gene is belonging to the DEAD-box family and plays an important role in germ cell development in many organisms including not only vertebrate, but also invertebrate during asexual and sexual reproduction and participates in stem cell differentiation during regeneration. In this study, in order to identify and characterize DDX3 gene in the earthworm, Perionyx excavatus having a powerful regeneration capacity, total RNA was isolated from adult head containing clitellum. Full length of DDX3 gene from P. excavatus, Pe-DDX3, was identified by RT-PCR using the total RNA from head as a template. Pe-DDX3 encoded a putative protein of 607 amino acids and it also has the nine conserved motifs of DEAD-box family, which is characteristic of DEAD-box protein family. It was confirmed that Pe-DDX3 has the nine conserved motifs by the comparison of entire amino acids sequence of Pe-DDX3 with other species of different taxa. Phylogenetic analysis revealed that Pe-DDX3 belongs to a DDX3 (PL10) subgroup of DEAD-box protein family. And it displayed a high homology with PL10a, b from P. dumerilii.

References

  1. Abdel-Monem M., Durwald H. and Hoffmann-Berling H., "Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme", Eur. J. Biochem., 65(2), pp. 441-449. (1976). https://doi.org/10.1111/j.1432-1033.1976.tb10359.x
  2. Luking A., Stahl U., Schmidt Y., "The protein family of RNA helicases" Crit. Rev. Biochem. Mol. Biol., 33, pp. 259-296. (1988).
  3. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. and Blinov, V. M., "Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes", Necleic Acids Res., 17, pp. 4714-4730. (1989).
  4. Linder P., Lasko P. F., Ashburner M., Leroy P., Nielsen P. J., Nishi K., Schnier- J. and Slonimski P. P., "Birth of the D-E-A-D box", Nature, 337, pp. 121-122. (1989). https://doi.org/10.1038/337121a0
  5. Oona J., Renate D., Ronald B., Patrick L., Margaret T. F., Paul L., "Belle is a Drosophila DEAD-box protein required for viability and in the germ line", Developmental Biology, 277, pp. 92-101. (2005). https://doi.org/10.1016/j.ydbio.2004.09.009
  6. Owsianka A. M. and Patel A. H., "Hepatitis C virus core protein interacts with a human DEAD box protein DDX3", Virology, 257(2), pp. 330-340. (1999). https://doi.org/10.1006/viro.1999.9659
  7. Ronsner A., Paz G. and Rinkevich B., "Divergent roles of the DEAD-box protein BS-PL10, the urochordate homologue of human DDX3 and DDX3Y proteins, in colony autogeny and ontogeny", Dev. Dyn., 235, pp. 1508-1521. (2006). https://doi.org/10.1002/dvdy.20728
  8. Rosner A. and Rinkevich B., "The DDX subfamily of the DEAD box helicases: Divergent roles as unveiled by studying different organisms and in vivo assays", Curr. Med. Chem., 14, pp. 2517-2525. (2007). https://doi.org/10.2174/092986707782023677
  9. Kim, H. R., "Identification and expression of Vasa-like gene during the anterior regeneration of Perionyx excavatus". Thesis of Master of Science, Chung-Ang University, Seoul, Korea (2007).
  10. http://www.ncbi.nlm.nih.gov/gorf/gorf.html
  11. http://pfam.janelia.org
  12. http://www.cbs.dtu.dk/services/SignalP
  13. http://www.expasy.org
  14. http://www.ebi.ac.uk/pdbsum
  15. http://swissmodel.expasy.org/workspace
  16. Komiya T., Itoh K., Ikenishi K. and Furusawa M., "Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis", Dev. Biol., 162, pp. 354-353. (1994). https://doi.org/10.1006/dbio.1994.1093
  17. Liang L., Diehl-Jones W. and Lasko P., "Localization of vasa protein to the Drosophila pole plasm is independent of its RNA binding and helicase activities", Development 120, pp. 1201-1211. (1994).
  18. Rebscher N., Zelada-Gonzalez F., Banisch T. U., Raible F. and Arendt D., "Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii", Dev. Biol., 306(2), pp. 599-611. (2007). https://doi.org/10.1016/j.ydbio.2007.03.521
  19. Gee, S. L. and Conboy, J. G., "Mouse erythroid cells express multiple putative RNA helicase genes exhibiting high sequence conservation from yeast to mammals", Gene, 140(2), pp. 171-177. (1994). https://doi.org/10.1016/0378-1119(94)90541-X
  20. Caldwell, R. B., Kierzek, A. M., Arakawa, H., Bezzubov, Y., Zaim, J., Fiedler, P., Kutter, S., Blagodatski, A., Kostovska, D., Koter, M., Plachy, J., Carninci, P., Hayashizaki, Y. and Buerstedde, J. M., "Full-length cDNAs from chicken bursal lymphocytes to facilitate gene function analysis", Genome Biol. 6(1), R6. (2005). https://doi.org/10.1186/gb-2005-6-4-p6
  21. Ray B. K., Lawson T. G., Kramer J. C., Cladaras M. H., Grifo J. A., Abramson R. D., Merrick W. C. and Thach R. E., "ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors", J. Biol. Chem., 260, pp. 7651-7658. (1985).
  22. Abdelhaleem M., "RNA helicases: regulators of differentiation", Clin. Biochem., 38, pp. 499-503. (2005). https://doi.org/10.1016/j.clinbiochem.2005.01.010
  23. Godbout R., Packer M. and Bie W., "Overexpression of a DEAD box protein (DDX1) in neuroblastoma and retinoblastoma cell lines", J. Biol. Chem., 273(33), pp. 21161-211618. (1998). https://doi.org/10.1074/jbc.273.33.21161
  24. Schmid S. R. and Linder P., "D-EA-D protein family of putative RNA helicases", Mol. Microbiol., 6, pp. 283-292. (1992). https://doi.org/10.1111/j.1365-2958.1992.tb01470.x
  25. Cordin O., Banroques J., Tanner N.K., Linder P., "The DEAD-box protein family of RNA helicases", Gene, 367, pp. 17-37. (2006). https://doi.org/10.1016/j.gene.2005.10.019
  26. Shukalyuk A. I., "Organization of Interna in Sacculina polygenea (Crustacea: Rhizocephala)", Russia J. Marine Biol., 28, pp. 329-335. (2002). https://doi.org/10.1023/A:1020959518552
  27. Shukalyuk A. I., Colovnina K. A., Baiborodin S. I., Gunbin K. V., Blinov A. G. and Isaeva V. V., "Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala)", Cell. Biol. Int. 31, pp. 97-108. (2006).
  28. Shibata N., Umesono Y., Orii H., Sakurai T., Watanabe K. and Agata K., "Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians", Dev. Biol. 206, pp. 73-87. (1999). https://doi.org/10.1006/dbio.1998.9130
  29. Kurimoto K., Muto Y., Obayashi N., Terada T., Shirouzu M., Yabuki T., Aoki M., Seki E., Matsuda T., Kigawa T., Okumura H., Tanake A., Shibata N., Kashikawa M., Agata K. and Yokoyama S., "Crystal structure of the N-terminal RecA-like domain of a DEAD-box RNA helicase, the Dugesia japonica vasa-like gene B protein", J. Struct. Biol., 150, pp. 58-68. (2005). https://doi.org/10.1016/j.jsb.2005.01.006
  30. Mochizuki K., Nishimiya-Fujisawa C. and Fujisawa T., "Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra", Dev. Genes Evol., 211, pp. 299-308. (2001). https://doi.org/10.1007/s004270100156
  31. Blum, S., Schmid, S. R., Pause, A., Buser, P., Linder, P., Sonenberg, N. and Trachsel, H., "ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyses cerevisiae", Proc. Natl. Acad. Sci. USA, 89, pp. 7664-7668. (1992). https://doi.org/10.1073/pnas.89.16.7664
  32. Pause A. and Sonenberg N., "Mutational analysis of a DEAD-box RNA helicase; the mammalian translation initiation factor eIF-4A", EMBO J. 11, pp. 2643-2654. (1992).
  33. Tanner N. K., Cordin O., Banroques J., Doere M. and Linder P., "The Q motif: a newly identified motif in DEAD box helicases may regulate ATP bindig and hydrolysis", Mol. Cell, 11, pp. 127-138. (2003). https://doi.org/10.1016/S1097-2765(03)00006-6
  34. Rogers Jr. G. W., Komar A. A. and Merrick W. C., "eIF4A: the godfather of the DEAD box helicases", Prog. Nucleic Acid Res. Mol. Biol., 72, pp. 307-331. (2002). https://doi.org/10.1016/S0079-6603(02)72073-4
  35. Graves-Woodward K. L., Gottlieb J., Challberg M. D. and Weller S. K., "Biochemical analyses of mutations in the HSV-1 helicase-primase that alter ATP hydrolysis, DNA unwinding and coupling between hydrolysis and unwinding", J. Biol. Chem., 272, pp. 4623-4630. (1997). https://doi.org/10.1074/jbc.272.7.4623
  36. Schwer B. and Meszaros T., "RNA helicase dynamics in pre-mRNA splicing", EMBO J. 19, pp. 6582-6591. (2000). https://doi.org/10.1093/emboj/19.23.6582