DOI QR코드

DOI QR Code

Antiangiogenic Activity of the Lipophilic Antimicrobial Peptides from an Endophytic Bacterial Strain Isolated from Red Pepper Leaf

  • Jung, Hye Jin (Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Yonghyo (Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Hyang Burm (Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kwon, Ho Jeong (Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2014.11.18
  • Accepted : 2014.12.08
  • Published : 2015.03.31

Abstract

The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible $factor-1{\alpha}$ and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.

Keywords

angiogenesis;antimicrobial peptide;Capsicum annuum L.;EML-CAP3;hypoxia-inducible $factor-1{\alpha}$

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), KRF

References

  1. Andre, T., Chastre, E., Kotelevets, L., Vaillant, J.C., Louvet, C., Balosso, J., Gall, E.L., Prevot, S., and Gespach, C. (1998). Tumoral angiogenesis: physiopathology, prognostic value and therapeutic perspectives. Rev. Med. Interne 19, 904-913. https://doi.org/10.1016/S0248-8663(99)80063-0
  2. Battegay, E.J. (1995). Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 73, 333-346.
  3. Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250. https://doi.org/10.1038/nrmicro1098
  4. Bussolino, F., Mantovani, A., and Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22, 251-256. https://doi.org/10.1016/S0968-0004(97)01074-8
  5. Cardones, A.R., and Banez, L.L. (2006). VEGF inhibitors in cancer therapy. Curr. Pharm. Des. 12, 387-394. https://doi.org/10.2174/138161206775201910
  6. Carmeliet, P. (2003). Blood vessels and nerves: common signals, pathways and diseases. Nat. Rev. Genet. 4, 710-720. https://doi.org/10.1038/nrg1158
  7. Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249-257 https://doi.org/10.1038/35025220
  8. Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307 https://doi.org/10.1038/nature10144
  9. Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., et al. (1998). Role of HIF-1alpha in hypoxiamediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490. https://doi.org/10.1038/28867
  10. Chen, L., and Chen, W. (2010). Isolation and characterization of a novel small antifungal peptide from Bacillus megaterium D4 isolated from the Dung of Wild Plateau Yak in China. Protein Pept. Lett. 17, 542-546. https://doi.org/10.2174/092986610790963627
  11. Cook, K.M., and Figg, W.D. (2010). Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J. Clin. 60, 222-243. https://doi.org/10.3322/caac.20075
  12. Cytryska, M., Mak, P., Zdybicka-Barabas, A., Suder, P., and Jakubowicz. T. (2007). Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28, 533-546. https://doi.org/10.1016/j.peptides.2006.11.010
  13. Folkman, J. (1995). Clinical applications of research on angiogenesis. N. Engl. J. Med. 235, 1757-1763.
  14. Folkman, J. (2001). Angiogenesis-dependent diseases. Semin. Oncol. 28, 536-542. https://doi.org/10.1016/S0093-7754(01)90021-1
  15. Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613. https://doi.org/10.1128/MCB.16.9.4604
  16. Galvez, A., Maqueda, M., Martinez-Bueno, M., Lebbadi, M., and Valdivia, E. (1993). Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12. Appl. Microbiol. Biotechnol. 39, 438-442. https://doi.org/10.1007/BF00205029
  17. Gaspar, D., Veiga, A.S., and Castanho. M.A. (2013). From antimicrobial to anticancer peptides. A review. Front. Microbiol. 4, 294.
  18. Giles, F.J., Cooper, M.A., Silverman, L., Karp, J.E., Lancet, J.E., Zangari, M., Shami, P.J., Khan, K.D., Hannah, A.L., Cherrington, J.M., et al. (2003). Phase II study of SU5416--a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor--in patients with refractory myeloproliferative diseases. Cancer 97, 1920-1928 https://doi.org/10.1002/cncr.11315
  19. Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364. https://doi.org/10.1016/S0092-8674(00)80108-7
  20. Jung, H.J., and Kwon, H.J. (2013). Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. Mol. Biosyst. 9, 930-939 https://doi.org/10.1039/c3mb25426g
  21. Jung, H.J., Lee, H.B., Kim, C.J. Rho, J.R., Shin, J., and Kwon, H.J. (2003a). Anti-angiogenic activity of terpestacin, a bicyclo sesterterpene from Embellisia chlamydospora. J. Antibiot. 56, 492-496. https://doi.org/10.7164/antibiotics.56.492
  22. Jung, H.J., Lee, H.B., Lim, C.H., Kim, C.J., and Kwon, H.J. (2003b). Cochlioquinone A1, a new anti-angiogenic agent from Bipolaris zeicola. Bioorg. Med. Chem. 11, 4743-4747 https://doi.org/10.1016/S0968-0896(03)00523-6
  23. Lee Y.J., Choi, I.K., Sheen, Y.Y., Park, S.N., and Kwon, H.J. (2012a). Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma. Mol. Cells 33, 203-210. https://doi.org/10.1007/s10059-012-2271-8
  24. Lee Y.J., Choi, I.K., Sheen, Y.Y., Park, S.N., and Kwon, H.J. (2012b). Identification of EBP50 as a specific biomarker for carcinogens via the analysis of mouse lymphoma cellular proteome. Mol. Cells 33, 309-316. https://doi.org/10.1007/s10059-012-2280-7
  25. Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E.A., Shenkier, T., Cella, D., and Davidson, N.E. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666-2676. https://doi.org/10.1056/NEJMoa072113
  26. Pushpanathan, M., Gunasekaran, P., and Rajendhran, J. (2013). Antimicrobial peptides: versatile biological properties. Int. J. Pept. 2013, 675391.
  27. Schagger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  28. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
  29. Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids 2012, 967347
  30. Unruh, A., Ressel, A., Mohamed, H.G., Johnson, R.S., Nadrowitz, R., Richter, E., Katschinski, D.M., and Wenger, R.H. (2003). The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 22, 3213-3220. https://doi.org/10.1038/sj.onc.1206385
  31. van Zoggel, H., Carpentier, G., Dos Santos, C., Hamma-Kourbali, Y., Courty, J., Amiche, M., and Delbe, J. (2012). Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2. PLoS One 7, e44351. https://doi.org/10.1371/journal.pone.0044351
  32. Verheul, H.M., and Pinedo, H.M. (2007). Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer 7, 475-485. https://doi.org/10.1038/nrc2152
  33. Walker, J.M. (1994). The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5-8
  34. Wu, S., Jia, S., Sun, D., Chen, M., Chen, X., Zhong, J., and Huan, L. (2005). Purification and characterization of two novel antimicrobial peptides Subpeptin JM4-A and Subpeptin JM4-B produced by Bacillus subtilis JM4. Curr. Microbiol. 51, 292-296. https://doi.org/10.1007/s00284-005-0004-3
  35. Zakarija, A., and Soff, G. (2005). Update on angiogenesis inhibitors. Curr. Opin. Oncol. 17, 578-583. https://doi.org/10.1097/01.cco.0000183672.15133.ab
  36. Zhang, B., Xie, C., and Yang, X. (2008). A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides 29, 350-355. https://doi.org/10.1016/j.peptides.2007.11.024

Cited by

  1. Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0183852
  2. Endophytic bacteria: a new source of bioactive compounds vol.7, pp.5, 2017, https://doi.org/10.1007/s13205-017-0942-z
  3. Sustained Release of Antimicrobial Peptide from Self-Assembling Hydrogel Enhanced Osteogenesis pp.1568-5624, 2018, https://doi.org/10.1080/09205063.2018.1504191