DOI QR코드

DOI QR Code

Nicotinamide Exerts Antioxidative Effects on Senescent Cells

  • Kwak, Ju Yeon (Department of Life Science, University of Seoul) ;
  • Ham, Hyun Joo (Department of Life Science, University of Seoul) ;
  • Kim, Cheol Min (Biochemistry, Pusan National University Medical College) ;
  • Hwang, Eun Seong (Department of Life Science, University of Seoul)
  • Received : 2014.09.17
  • Accepted : 2014.11.19
  • Published : 2015.03.31

Abstract

Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.

Keywords

aging;antioxidant;nicotinamide;ROS;senescence

References

  1. Atamna, H., Paler-Martinez, A., and Ames, B.N. (2000). N-t-butyl hydroxylamine, a hydrolysis product of alpha-phenyl-N-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J. Biol. Chem. 275, 6741-6748 https://doi.org/10.1074/jbc.275.10.6741
  2. Burkart, V., Blaeser, K., and Kolb, H. (1999). Potent beta-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm. Metab. Res. 12, 641-644.
  3. Cho, S., Park, J., and Hwang, E.S. (2011). Kinetics of the cell biological changes occurring in the progression of DNA damageinduced senescence. Mol. Cells 6, 539-546.
  4. Dai, D.F., Chiao, Y.A., Marcinek, D.J., Szeto, H.H., and Rabinovitch, P.S. (2014). Mitochondrial oxidative stress in aging and healthspan. Longev. Healthspan 3, 6.
  5. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367 https://doi.org/10.1073/pnas.92.20.9363
  6. Finkel, T. (2000). Redox-dependent signal transduction. FEBS Lett. 476, 52-54. https://doi.org/10.1016/S0014-5793(00)01669-0
  7. Genova, M.L., Pich, M.M., Bernacchia, A., Bianchi, C., Biondi, A., Bovina, C., Falasca, A.I., Formiggini, G., Castelli, G.P., and Lenaz, G. (2004). The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. N Y Acad. Sci. 1011, 86-100 https://doi.org/10.1196/annals.1293.010
  8. Hwang, E.S., Yoon, G., and Kang, H.T. (2009). A comparative analysis of the cell biology of senescence and aging. Cell. Mol. Life Sci. 66, 2503-2524. https://doi.org/10.1007/s00018-009-0034-2
  9. Jackson, T.M., Rawling, J.M., Roebuck, B.D., and Kirkland, J.B. (1995). Large supplements of nicotinic acid and nicotinamide increase tissue NAD+ and poly(ADP-ribose) levels but do not affect diethylnitrosamine-induced altered hepatic foci in Fischer-344 rats. J. Nutr. 125, 1455-14561.
  10. Jang, S.Y., Kang, H.T., and Hwang. E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
  11. Kamat, J.P., and Devasagayam, T.P. (1999). Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox. Rep. 4, 179-184. https://doi.org/10.1179/135100099101534882
  12. Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). NAM extends replicative lifespan of human cells. Aging Cell. 5, 423-436. https://doi.org/10.1111/j.1474-9726.2006.00234.x
  13. Lee, B.Y., Han, J.A, Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D., and Hwang, E.S. (2006). Senescenceassociated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5, 187-195. https://doi.org/10.1111/j.1474-9726.2006.00199.x
  14. Lee, H.I., Jang, S.Y., Kang, H.T., and Hwang, E.S. (2008). p53-, SIRT1-, and PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated cells. Biochem. Biophys. Res. Commun. 368, 298-304. https://doi.org/10.1016/j.bbrc.2008.01.082
  15. Liaudet, L., Soriano, F.G., Szabo, E., Virag, L., Mabley, J.G., Salzman, A.L., and Szabo, C. (2000). Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 97, 10203-10208 https://doi.org/10.1073/pnas.170226797
  16. Ling, Y.H., el-Naggar, A.K., Priebe, W., and Perez-Soler, R. (1996). Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol. Pharmacol. 49, 832-841.
  17. Liu, G., Foster J., Manlapaz-Ramos, P., and Olivera B.M., (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmo nella typhimurium. J. Bacteriol. 152, 1111-1116.
  18. Loschen, G., and Azzi, A. (1975). On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria. Recent Adv. Stud. Cardiac. Struct. Metab. 7, 3-12.
  19. Maiese, K., and Chong, Z.Z. (2003). Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol. Sci. 24, 228-232. https://doi.org/10.1016/S0165-6147(03)00078-6
  20. McFarland, G.A., and Holliday, R. (1994). Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp. Cell Res. 212, 167-175 https://doi.org/10.1006/excr.1994.1132
  21. Melov, S. (2000). Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann. N Y Acad. Sci. 908, 219-225.
  22. Packer, L., and Fuehr, K. (1997). Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423-425.
  23. Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5, 741-747 https://doi.org/10.1038/ncb1024
  24. Passos, J.F., Saretzki, G., and von Zglinicki, T. (2007). DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 35, 7505-7513. https://doi.org/10.1093/nar/gkm893
  25. Rattan, S.I., and Clark, B.F. (1994). Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem. Biophys. Res. Commun. 201, 665-672. https://doi.org/10.1006/bbrc.1994.1752
  26. Serra, V., von Zglinicki, T., Lorenz, M., and Saretzki, G. (2003). Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J. Biol. Chem. 278, 6824-6830. https://doi.org/10.1074/jbc.M207939200
  27. Song, Y.S., Lee, B.Y., and Hwang, E.S. (2005). Distinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech. Ageing Dev. 126, 580-590. https://doi.org/10.1016/j.mad.2004.11.008
  28. Spagnuolo, G., D'Anto, V., Cosentino, C., Schmalz, G., Schweikl, H., and Rengo, S. (2006). Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27, 1803-1809 https://doi.org/10.1016/j.biomaterials.2005.10.022
  29. Verhasselt, V., Vanden Berghe, W., Vanderheyde, N., Willems, F., Haegeman, G., and Goldman, M. (1999). N-acetyl-L-cysteine inhibits primary human T cell responses at the dendritic cell level: association with NF-kappaB inhibition. J. Immunol. 162, 2569-2574.
  30. Von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339-344. https://doi.org/10.1016/S0968-0004(02)02110-2
  31. Yatin, S.M., Varadarajan, S., and Butterfield, D.A. (2000). Vitamin E prevents Alzheimer's amyloid beta-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J. Alzheimers Dis. 2, 123-131. https://doi.org/10.3233/JAD-2000-2212
  32. Zhao, W., Gan, X., Su, G., Wanling, G., Li, S., Hei, Z., Yang, C., and Wang, H. (2014). The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemia-reperfusion. J. Surg. Res. 187, 542-552. https://doi.org/10.1016/j.jss.2013.10.033

Cited by

  1. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0168
  2. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells vol.181, 2017, https://doi.org/10.1016/j.lfs.2017.06.003
  3. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/1941285
  4. Cellular senescence: Molecular mechanisms and pathogenicity vol.233, pp.12, 2018, https://doi.org/10.1002/jcp.26956