Mutation Detection of E6 and LCR Genes from HPV 16 Associated with Carcinogenesis

  • Mosmann, Jessica P. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba) ;
  • Monetti, Marina S. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba) ;
  • Frutos, Maria C. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba) ;
  • Kiguen, Ana X. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba) ;
  • Venezuela, Raul F. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba) ;
  • Cuffini, Cecilia G. (Instituto de Virologia "Dr. J. M. Vanella", Facultad de Ciencias Medicas-Universidad Nacional de Cordoba)
  • Published : 2015.03.04


Human papillomavirus (HPV) is responsible for one of the most frequent sexually transmitted infections. The first phylogenetic analysis was based on a LCR region fragment. Nowadays, 4 variants are known: African (Af-1, Af-2), Asian-American (AA) and European (E). However the existence of sub-lineages of the European variant havs been proposed, specific mutations in the E6 and LCR sequences being possibly related to persistent viral infections. The aim of this study was a phylogenetic study of HPV16 sequences of endocervical samples from C${\acute{o}}$rdoba, in order to detect the circulating lineages and analyze the presence of mutations that could be correlated with malignant disease. The phylogenetic analysis determined that 86% of the samples belonged to the E variant, 7% to AF-1 and the remaining 7% to AF-2. The most frequent mutation in LCR sequences was G7521A, in 80% of the analyzed samples; it affects the binding site of a transcription factor that could contribute to carcinogenesis. In the E6 sequences, the most common mutation was T350G (L83V), detected in 67% of the samples, associated with increased risk of persistent infection. The high detection rate of the European lineage correlated with patterns of human migration. This study emphasizes the importance of recognizing circulating lineages, as well as the detection of mutations associated with high-grade neoplastic lesions that could be correlated to the development of carcinogenic lesions.


  1. Andersson S, Alemi M, Rylander E, et al (2000). Uneven distribution of HPV16 E6 prototype and variant (L83V) oncoprotein in cervical neoplastic lesions. Br J Cancer, 83, 307-10.
  2. Bernad HU (2006). Phylogeny and taxonomy of papillomaviruses, In 'Papillomavirus Research', Ed Saveria campom. Institute Of Comparative Medicine University Of Glasgow, UK, pp.11-7.
  3. Bernard HU, Chan S, Manos M (1994). Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis, 170, 1077-85.
  4. Bontkes H, Van Duin M, De Gruijl T, et al (1998). HPV16 infection and progression of cervical intra-epithelial neoplasia: analysis of HLA polymorphism and HPV16 E6 sequence variants. Int J Cancer, 78, 166-71.<166::AID-IJC8>3.0.CO;2-X
  5. Brady C, Duggan-keen M, Davidson J, Varley J, Stern P (1990). Human papillomavirus type 16 E6 variants in cervical carcinoma: relationship to host genetic factors and clinical parameters. J Gen Virol, 80, 3233-40.
  6. Cento V, Ciccozzi M, Ronga L, Perno, Ciotti M (2009). Genetic diversity of human papillomavirus type 16 E6, E7 and L1 genes in Italian women with different grades of cervical lesions. J Med Virol, 81, 1627-34.
  7. Cornet I, Gheit T, Franceschi S, et al (2012). Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol, 86, 6855-61.
  8. Cornet I, Gheit T, Iannacone M, et al (2013). HPV16 genetic variation and the development of cervical cancer worldwide. Br J Cancer, 108, 240-4.
  9. Fernandes Brenna S, Syrjanen K (2003). Regulation of cell cycles is a key importance in human papillomavirus (HPV) associated cervical carcinogenesis. Sao Paulo Med J, 121, 128-32.
  10. Guindon S, Gascuel O (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52, 696-704.
  11. Ho L, Chan S, Burk R, et al (1993). The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol, 67, 6413-23.
  12. Ho L, Chan S, Chow V, et al (1991). Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. J Clin Microbiol, 29, 1765-72.
  13. Kammer C, Tommasino M, Syrjanen S, et al (2002). Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: implications for cervical disease. Br J Cancer, 86, 269- 73.
  14. Londesboroug P, Ho L, Terr G, et al (1996). Human Papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. Int J Cancer, 69, 364-8.<364::AID-IJC2>3.0.CO;2-3
  15. Muñoz N, Bosch F, de Sanjose S, et al (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med, 348, 518-27.
  16. O'Connor M, Chan S, Bernad HU (1995). Transcription factor binding sites in the long control region of genital HPVs. In 'Human Papillomaviruses', Eds Myers G, Bernad HU, Delius H, et al. Los Alamos National Laboratory, Los Alamos N. Mex pp. 21-40.
  17. Pande S, Jain N, Prusty B, et al (2008). Human Papillomavirus type 16 variant analysis of E6, E7, and L1 genes and long control region in biopsy samples from cervical cancer patients in north India. J Clin Microbiol, 46, 1060-6.
  18. Picconi M, Gronda J, Alonio L, et al (2002). Virus papiloma humano en mujeres quechuas jujeñas con alta frecuencia de cancer de cuello uterino. Tipos virales y variantes de HPV16. Medicina, 62, 209-20.
  19. Picconi M, Alonio L, Sichero L, et al (2003). Human papillomavirus type-16 variants in Quechua aboriginals from Argentina. J Med Virol, 69, 546-52.
  20. Posada D (2008). jModelTest: Phylogenetic model averaging. Mol Biol Evol, 25, 1253-6.
  21. Schiffman M, Rodriguez A, Chen Z, et al (2010). A population-based prospective study of carcinogenic human papillomavirus (HPV) variant lineages, viral persistence, and cervical neoplasia. Cancer Res, 70, 3159-69.
  22. Schmidt M, Kedzia W, Gozdzicka-Jozefiak A (2001). Intratype HPV16 sequence variation within LCR of isolates from asymptomatic carriers and cervical cancers. J Clin Virol, 23, 65-77.
  23. Seedorf K, Krammer G, Durst M, Suhai S, Rowekamp W (1985). Human Papillomavirus type 16 sequence. Virol, 145, 181-5.
  24. Shang Q, Wang Y, Fang Y, et al (2011). Human papillomavirus type 16 variant analysis of E6, E7, and L1 genes and long control region in identification of cervical carcinomas in patients in northeast China. J Clin Microbiol, 49, 2656-63.
  25. Sichero L, Sobrinho J, Villa L (2012). Oncogenic potential diverge among human papillomavirus type 16 natural variants. Virol, 432, 127-32.
  26. Smith B, Chen Z, Reimers L, et al (2011). Sequence imputation of HPV16 genomes for genetic association studies. PLoS ONE, 6, 1-8.
  27. Tonón S, Basiletti J, Badano I, et al (2007). Human papillomavirus type 16 molecular variants in Guarani Indian women from Misiones, Argentina. Int J Infect Dis, 11, 76-81.
  28. Venezuela R, Kiguen A, Frutos M, Cuffini C (2012). Circulation of Human Papillomavirus (HPV) genotypes in women from Córdoba, Argentina, with squamous intraepithelial lesions. Rev Inst Med Trop Sao Paulo, 54, 11-6.
  29. Villa L, Sichero L, Rahal P, et al (2000). Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J Gen Virol, 81, 2959-68.
  30. Xi L, Demers G, Koutsky L, et al (1995). Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection. J Infect Dis, 172, 747-55.
  31. Xi L, Kiviat N, Wheeler C, et al (2007) Risk of cervical intraepithelial neoplasia grade 2 or 3 after loop electrosurgical excision procedure associated with human papillomavirus type 16 variants. J Infect Dis, 195, 1340-4.
  32. Yamada T, Manos M, Peto J, et al (1997). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol, 71, 2463-72.
  33. Zehbe I, Wilander E, Delius H, Tommasino M (1998). Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res, 58, 829-33.
  34. Zehbe I, Tachezy R, Mytilineos J, et al (2001). Human papillomavirus 16 E6 polymorphisms in cervical lesions from different european populations and their correlation with human leukocyte antigen class II haplotypes. Int J Cancer, 94, 711-6.
  35. Zuna E, Tuller E, Wentzensen N, et al (2011). HPV16 variant lineage, clinical stage, and survival in women with invasive cervical cancer. Inf Ag Cancer, 6, 1-9.
  36. Zur Hausen H (1991) Human papillomaviruses in the pathogenesis of anogenital cancer. Virol, 184, 9-13.

Cited by

  1. Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes vol.16, pp.9, 2015,
  2. Molecular analysis of human Papillomavirus detected among women positive for cervical lesions by visual inspection with acetic acid/Lugol’s iodine (VIA/VILI) in Libreville, Gabon vol.11, pp.1, 2016,
  3. p53, Cyclin D1, p21 (WAF1) and Ki-67 (MIB1) Expression at Invasive Tumour Fronts of Oral Squamous Cell Carcinomas and Development of Local Recurrence vol.17, pp.3, 2016,
  4. Genetic variability and functional implication of the long control region in HPV-16 variants in Southwest China vol.12, pp.8, 2017,
  5. Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region vol.8, pp.3, 2016,
  6. The polymorphisms of LCR, E6, and E7 of HPV-58 isolates in Yunnan, Southwest China vol.15, pp.1, 2018,