DOI QR코드

DOI QR Code

Inhibitory effect of SeO2 on cell growth of methicillin-resistant Staphylococcus aureus

SeO2의 메티실린-내성 황색포도상구균에 대한 생육 억제 효과

  • Han, Yeong-Hwan (Department of Medical Biotechnology, Dongguk University)
  • 한영환 (동국대학교 의생명공학과)
  • Received : 2015.12.02
  • Accepted : 2015.12.21
  • Published : 2015.12.31

Abstract

This study was carried out to determine the antibacterial activity of $SeO_2$ against pathogenic bacteria, methicillin-resistant Staphylococcus aureus (MRSA). Using the disc diffusion method, $SeO_2$ showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria used in this study. Coccus-form bacteria showed much susceptible to $SeO_2$, compared to bacillus-form bacteria. Compared to antibiotics-susceptible S. aureus, antibiotics used in this study showed lower antibacterial activity against MRSA. As $200-500{\mu}g/disc$ of $SeO_2$ was applied, diameters of clear zone for S. aureus and MRSA were 20-32.7 mm and 13.5-17.9 mm, respectively. For MRSA, minimal inhibitory concentration of $SeO_2$ was $40{\mu}g/ml$. When $SeO_2$ was added in culture broth, cell growth of MRSA was inhibited. These results will be applied to determine antibacterial mechanism of MRSA and other pathogenic microorganisms.

Keywords

Staphylococcus aureus;inhibitory effect;methicillin resistant;MIC;$SeO_2$

References

  1. Ding, R., Xue-Chang Wu, X.C., Qian, C.D., Teng, Y., Li, Q., Zhan, Z.J., and Zhao, Y.H. 2011. Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with Inhibitory activity against methicillin-resistant Staphylococcus aureus. J. Microbiol. 49, 942-949. https://doi.org/10.1007/s12275-011-1153-7
  2. Ji, K., Jeong, T.H., and Kim, Y.T. 2015. Anti-MRSA properties of prodigiosin from Serratia sp. PDGS 120915. J. Life Sci. 25, 29-36. https://doi.org/10.5352/JLS.2015.25.1.29
  3. Kim, S.G., Kim, M.J., Jin, D.C., Park, S.N., Cho, E., Freire, M.O., Jang, S.J., Park, Y.J., and Kook, J.K. 2012. Antimicrobial effect of ursolic acid and oleanolic acid against methicillin-resistant Staphylococcus aureus. Korean J. Microbiol. 48, 212-215. https://doi.org/10.7845/kjm.2012.029
  4. Lee, D.S., Eom, S.H., Jeong, S.Y., Shin, H.J., Je, J.Y., Lee, E.W., Chung, Y.H., Kim, Y.M., Kang, C.K., and Lee, M.S. 2012. Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ. Toxicol. Pharmacol. 35, 171-177.
  5. Lee, D.S., Jeong, S.Y., Kim, Y.M., Lee, M.S., Ahn, C.B., and Je, J.Y. 2009. Antibacterial activity of aminoderivatized chitosans against methicillin-resistant Staphylococcus aureus (MRSA). Bioorgan. Medicin. Chem. 17, 7108-7112. https://doi.org/10.1016/j.bmc.2009.09.007
  6. Lee, J.W., Ji, Y.J., Lee, S.O., and Lee, I.S. 2007. Effect of Saliva miltiorrhiza Bunge on antimicrobial activity and resistant gene regulation against methicillin-resistant Staphylococcus aureus (MRSA). J. Microbiol. 45, 350-357.
  7. Lim, Y.H. 1995. Structure elucidation of a potent anti-MRSA antibiotic, AM3, produced by Streptomyces sp. J. Kor. Soc. Appl. Biol. Chem. 38, 516-521.
  8. Seong, I. 2004. Antimicrobial activities of Scutellaria baicalensis and Phellodendrom amurense against MRSA and Candida. Kor. J. Microbiol. 40, 17-22.
  9. Shin, S.H. and Seong, I.H. 2006. Antimicrobial activity of the extracts from Paeonia japonica against methicillin-resistant Staphylococcus aureus. Korean J. Microbiol. 42, 54-58.
  10. Visutthi, M., Potjanee Srimanote, P., and Voravuthikunchai, S.P. 2011. Responses in the expression of extracellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone. J. Microbiol. 49, 956-964. https://doi.org/10.1007/s12275-011-1115-0
  11. Yoo, J.C., Kim, J.H., Ha, J.W., Park, N.S., Sohng, J.K., Lee, J.W., Park, S.C., Kim, M.S., and Seong, C.N. 2007. Production and biological activity of laidlomycin, anti-MRSA/VRE antibiotic from Streptomyces sp. CS684. J. Microbiol. 45, 6-10.