DOI QR코드

DOI QR Code

Antilisterial activity of fresh cheese fermented by Lactobacillus paracasei BK57

Lactobacillus paracasei BK57 균주로 발효시킨 프레쉬 치즈의 항리스테리아 활성

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University) ;
  • Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University)
  • 임은서 (동명대학교 식품영양학과) ;
  • 이은우 (동의대학교 생명응용학과)
  • Received : 2015.11.26
  • Accepted : 2015.12.17
  • Published : 2015.12.31

Abstract

This study is focused on establishing the optimal conditions to enhance the production of antilisterial substances by Lactobacillus paracasei BK57 isolated from Baikkimchi. In addition, the growth and in situ lactic acid and bacteriocin production of this strain were investigated during the manufacture of fresh cheese. And then the efficacy of using Lactobacillus starter as a protective culture to improve the safety of fresh cheese against Listeria monocytogenes KCTC 3569 was estimated. Maximum growth rate and activity of antibacterial substances were obtained in Lactobacilli MRS broth at $37^{\circ}C$ with controlled pH 6.0 after 30 h of incubation under aerobic condition. However, the growth rate and antimicrobial activity of bacteriocin produced in whole milk supplemented with yeast extract (2.0%) as a substrate were lower than those obtained in MRS broth. Live cells and cell-free culture supernatant of BK57 strain were effective in the suppression of L. monocytogenes in milk, whereas the inhibitory of the bacteriocin obtained from BK57 strain was higher in BHI broth than in milk. During storage at $4^{\circ}C$ and $15^{\circ}C$ for 6 days, no significant difference was found in the cell viability and antimicrobial activity of BK 57 strain in fresh cheese. In samples held at two temperatures, there was at least a 15% reduction in the numbers of the pathogen in fresh cheese artificially contaminated with approximately $10^5CFU/ml$ of L. monocytogenes within 6 days. Our results demonstrated the usefulness of L. paracasei BK57 having antilisterial activity as a biopreservative in the cheese making process.

Keywords

Lactobacillus paracasei;Listeria monocytogenes;antimicrobial activity;bacteriocin;cheese

References

  1. Abbasiliasi, S., Ramanan, R.N., Ibrahim, T.Z.T., Mustafa, S., Mohamad, R., Daud, H.H., and Ariff, A.B. 2011. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracasei LA07, a strain isolated from budu. Biotechnol. Biotechnol. Eq. 25, 2652-2657. https://doi.org/10.5504/BBEQ.2011.0101
  2. Aguilar, C., Vanegas, C., and Klotz, B. 2011. Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes. J. Dairy Res. 78, 136-143. https://doi.org/10.1017/S0022029910000877
  3. Avonts, L., Van Uytven, E., and De Vuyst, L. 2004. Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J. 14, 947-955. https://doi.org/10.1016/j.idairyj.2004.04.003
  4. Balciunas, E.M., Martinez, F.A.C., Todorov, S.D., De Melo Franco, B.D.G., Converti, A., and De Souza Oliveira, R.P. 2013. Novel biotechnological applications of bacteriocins: A review. Food Control 32, 134-142. https://doi.org/10.1016/j.foodcont.2012.11.025
  5. Benkerroum, N. and Sandine, W.E. 1988. Inhibitory action of nisin against Listeria monocytogenes. J. Dairy Sci. 71, 3237-3245. https://doi.org/10.3168/jds.S0022-0302(88)79929-4
  6. Buyong, N., Kok, J., and Luchansky, J.B. 1998. Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM 217 to control Listeria monocytogenes in Cheddar cheese. Appl. Environ. Microbiol. 64, 4842-4845.
  7. Cleveland, J., Montville, T.J., Nes, I.F., and Chikindas, M.L. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  8. Coelho, M.C., Silva, C.C.G., Ribeiro, S.C., Dapkevicius, M.L.N.E., and Rosa, H.J.D. 2014. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 191, 53-59. https://doi.org/10.1016/j.ijfoodmicro.2014.08.029
  9. De Vuyst, L., Callewaert, R., and Crabbe, K. 1996. Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiol. 142, 817-827. https://doi.org/10.1099/00221287-142-4-817
  10. De Vuyst, L. and Leroy, F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194-199. https://doi.org/10.1159/000104752
  11. Elli, M., Zink, R., Reniero, R., and Morelli, L. 1999. Growth requirements of Lactobacillus johnsonii in skim and UHT milk medium. Int. Dairy J. 9, 507-513. https://doi.org/10.1016/S0958-6946(99)00127-2
  12. Farias, M.E., De kairuz, M.N., Sesma, F., Palacios, J., De Ruiz Holgado, A.P., and Oliver, G. 1999. Inhibition of Listeria monocytogenes by the bacteriocin enterocin CRL35 during goat cheese making. Milchwissenschaft 54, 30-32.
  13. Fox, P.F. 1989. Proteolysis during cheese manufacture and ripening. J. Dairy Sci. 72, 1379-1400. https://doi.org/10.3168/jds.S0022-0302(89)79246-8
  14. Galvez, A., Abriouel, H., Lopez, R.L., and Omar, N.B. 2007. Bacteriocin-based strategies for food bioprservation. Int. J. Food Microbiol. 120, 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  15. Galvez, A., Omar, N.B., and Abriouel, H. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28, 125-152. https://doi.org/10.1080/07388550802107202
  16. Ganzel, M., Weber, S., and Hammes, W. 1999. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46, 207-217. https://doi.org/10.1016/S0168-1605(98)00205-0
  17. Giraffa, G., Picchioni, N., Neviani, E., and Carminati, D. 1995. Production and stability of an Enterococcus faecium bacteriocin during Taleggio cheesemaking and ripening. Food Microbiol. 12, 301-307. https://doi.org/10.1016/S0740-0020(95)80110-3
  18. Henning, S., Metz, R., and Hammes, W.P. 1986. Studies on the mode of action of nisin. Int. J. Food Microbiol. 3, 121-134. https://doi.org/10.1016/0168-1605(86)90007-3
  19. Hicks, S.J. and Lund, B.M. 1991. The survival of Listeria monocytogenes in cottage cheese. J. Appl. Bacteriol. 70, 308-314. https://doi.org/10.1111/j.1365-2672.1991.tb02941.x
  20. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  21. Hugas, M., Garriga, M., Pascual, M., Aymerich, M.T., and Monfort, J.M. 2002. Enhancement of sakacin K activity against Listeria monocytogenes in fermented sausages with pepper or manganese as ingredients. Food Microbiol. 19, 519-528. https://doi.org/10.1006/fmic.2002.0497
  22. Klaenhammer, T.R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70, 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  23. Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacterira. FEMS Microbiol. Rev. 12, 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  24. Kucerova, K., Korbova, I., Horackova, S., Svirakova, E., and Plockova, M. 2009. Influence of enterococci and Lactobacilli on Listeria. Czech. J. Food Sci. 27, 12-17.
  25. Leroy, F. and De Vuyst, L. 1999. The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Appl. Environ. Microbiol. 65, 5350-5356.
  26. Leroy, F. and De Vuyst, L. 2000. Sakacins. In Naidu, A.S. (ed.), Natural food antimicrobial systems, pp. 589-610. CRC Press LLC, Boca Raton, USA.
  27. Leroy, F. and De Vuyst, L. 2005. Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int. J. Food Microbiol. 100, 141-152. https://doi.org/10.1016/j.ijfoodmicro.2004.10.011
  28. Lim, S.M. 2014. Anti-Helicobacter pylori activity of antimicrobial substances produced by lactic acid bacteria isolated from Baikkimchi. J. Kor. Soc. Appl. Biol. Chem. 57, 621-630. https://doi.org/10.1007/s13765-014-4198-6
  29. Lindgren, S.E. and Dobrogosz, W.J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87, 149-163. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x
  30. Maisnier-Patin, S., Deschamps, N., Tatini, S.R., and Richard, J. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72, 249-263. https://doi.org/10.1051/lait:1992318
  31. Malini, M. and Savitha, J. 2012. Heat stable bacteriocin from Lactobacillus paracasei subsp. tolerans isolated from locally available cheese: An in vitro study. J. Biotechnol. Pharm. Res. 3, 28-41.
  32. Martinez, F.A.C., Balciunas, E.M., Salgado, J.M., Gonzalez, J.M.D., Converti, A., and De Souza, Oliveira, R.P. 2013. Lactic acid properties, applications and production: A review. Trends Food Sci. Tech. 30, 70-83. https://doi.org/10.1016/j.tifs.2012.11.007
  33. Mataragas, M., Metaxopoulos, J., Galiotou, M., and Drosinos, E.H. 2003. Influence of pH and temperature by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci. 64, 265-271. https://doi.org/10.1016/S0309-1740(02)00188-2
  34. McAuliffe, O., Hill, C., and Ross, R.P. 1999. Inhibition of Listeria monocytogenes in cottage cheese manufactured with a lacticin 3147-producing starter culture. J. Appl. Microbiol. 86, 251-256. https://doi.org/10.1046/j.1365-2672.1999.00663.x
  35. Meghrous, J., Huot, M., Quittelier, M., and Petitdemange, H. 1992. Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res. Microbiol. 143, 879-890. https://doi.org/10.1016/0923-2508(92)90075-Y
  36. Ong, L., Henriksson, A., and Shah, N.P. 2006. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int. Dairy J. 16, 446-456. https://doi.org/10.1016/j.idairyj.2005.05.008
  37. Parente, E., Brienza, C., Ricciardi, A., and Addario, G. 1997. Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. J. Ind. Microbiol. Biotechnol. 18, 62-67. https://doi.org/10.1038/sj.jim.2900368
  38. Parente, E. and Hill, C. 1992. A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. J. Appl. Bacteriol. 73, 290-298. https://doi.org/10.1111/j.1365-2672.1992.tb04980.x
  39. Parente, E. and Ricciardi, A. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. https://doi.org/10.1007/s002530051570
  40. Rattanachaikunsopon, P. and Phumkhachorn, P. 2010. Lactic acid bacteria: their antimicrobials compounds and their uses in food production. Ann. Biol. Res. 4, 218-228.
  41. Rilla, N., Martinez, B., and Rodriguez, A. 2004. Inhibition of a methicillin-resistant Staphylococcus aureus strain in Afuega'l Pitu cheese by the nisin Z producing strain Lactococcus lactis IPLA 729. J. Food Protect. 67, 928-933. https://doi.org/10.4315/0362-028X-67.5.928
  42. Ross, R.P., Morgan, S., and Hill, C. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
  43. Ryan, M.P., Rea, M.C., Hill, C., and Ross, P.R. 1996. An application in Cheddar cheese manufacture for a strain of Lactococcus lactis produing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 62, 612-619.
  44. Sahl, H.G. and Bierbaum, G. 1998. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Grampositive bacteria. Ann. Rev. Microbiol. 52, 41-79. https://doi.org/10.1146/annurev.micro.52.1.41
  45. Sarantinopoulos, P., Leroy, F., Leontopoulou, E., Georgalaki, M.D., Kalantzopoulos, G., Tsakalidou, E., and De Vuyst, L. 2002. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int. J. Food Microbiol. 72, 125-136. https://doi.org/10.1016/S0168-1605(01)00633-X
  46. Schillinger, U., Geisen, R., and Holzapfel, W.H. 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Tech. 7, 158-164. https://doi.org/10.1016/0924-2244(96)81256-8
  47. Stecchini, M.L., Aquili, V., and Sarais, I. 1995. Behavior of Listeria monocytogenes in Mozzarella cheese in presence of Lactococcus lactis. Int. J. Food Microbiol. 25, 301-310. https://doi.org/10.1016/0168-1605(94)00093-L
  48. Suskovic, J., Kos, B., Beganovic, J., Pavunc, A.L., Habjanic, K, and Matosic, S. 2010. Antimicrobial activity - The most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 48, 296-307.
  49. Vignolo, G.M., De Kairuz, M.N., De Ruiz, Holgado, A.A.P., and Oliver, G. 1995. Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78, 5-10. https://doi.org/10.1111/j.1365-2672.1995.tb01665.x
  50. Villani, F., Salzano, G., Sorrentino, E., Pepe, O., Marino, P., and Coppola, S. 1993. Enterocin 226 NWC, a bacteriocin produced by Enterococcus faecalis 226, active against Listeria monocytogenes. J. Appl. Bacteriol. 74, 380-387. https://doi.org/10.1111/j.1365-2672.1993.tb05142.x
  51. Wee, Y.J., Kim, J.N., and Ryu, H.W. 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 163-172.
  52. Yang, R., Johnson, M.C., and Ray, B. 1992. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 58, 3355-3359.
  53. Zalan, Z., Hudacek, J., Stetina, J., Chumchalova, J., and Halasz, A. 2010. Production of organic acids by Lactobacillus strains in three different media. Eur. Food Res. Technol. 230, 395-404. https://doi.org/10.1007/s00217-009-1179-9