생물증강법을 이용한 도심 오염 소하천의 친환경적 수질정화 및 악취제어

Eco-friendly remediation and odor control of a contaminated urban stream using beneficial microorganisms

  • 장재수 (한국해양대학교 환경공학과) ;
  • 송지경 (한국해양대학교 환경공학과) ;
  • 김인수 (한국해양대학교 환경공학과) ;
  • 유장연 (한국해양과학기술전문대학원 해양과학기술융합학과) ;
  • 고성철 (한국해양대학교 환경공학과)
  • Chang, Jae-Soo (Department Environmental Engineering, Korea Maritime and Ocean University) ;
  • Song, Jikyung (Department Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, In-Soo (Department Environmental Engineering, Korea Maritime and Ocean University) ;
  • Yoo, Jangyeon (Department Convergence Study on the Ocean Science and Technology, Korea Institute of Ocean Science and Technology) ;
  • Koh, Sung-Cheol (Department Environmental Engineering, Korea Maritime and Ocean University)
  • 투고 : 2015.12.07
  • 심사 : 2015.12.24
  • 발행 : 2015.12.31


본 연구에서는 동천의 하류와 연결된 호계천의 수질환경현황 및 문제점을 분석하여 하천의 실태를 파악하고, 수질 및 악취를 비롯하여 병원미생물제거를 위한 친환경적이며 가장 경제적인 방안을 제시하고자 하였다. 조사 정점은 부산시 동구 범일동 호계천 수질에 대하여 장마철을 포함하여 지난 수개월 동안에 걸쳐 선정된 3개 정점에 대하여 미생물제제의 투입전후의 수질과 악취변화를 분석하였다. 활성화된 미생물제제는 $0.042m^3$/시간의 속도로 4일간 지속적으로 유지하여 처리하였고 약 2개월에 걸쳐 7-10일 간격으로 실시하였다. 제제처리 전후의 DO 및 오염물질별 단위시간당 평균총량을 계산하여, 제제처리 전후의 DO 및 오염물질별 제거효율을 분석한 결과 용존산소는 중류 및 하류의 경우 상류(대조군)에 비해서 1.7배 정도의 높은 농도를 나타내었다. 이는 하천의 정화작용으로 인해 회복이 됨을 의미한다. COD의 경우는 중류 및 하류에 있어서 가장 높은 제거효율을 보여 대조군에 비해 약 2배의 제거효율을 보였다(약 60%에 육박). 그리고 제제처리 전에 비해 제제처리 후 상류지점의 악취에 비해 중류지점의 악취감소가 평균 약 65% 정도 감소가 나타났으며, 하류지점의 악취감소는 평균 약 19% 정도 감소하였다. 따라서 미생물제제처리에 의한 악취저감이 현저함을 알 수 있었다. 미생물군집의 종(Species) 수준에서는 전반적으로 Hydrogenophaga caeni, Sphaerotilus natans, Acidovorax radicis, Acidovorax delafieldii 및 Cloacibacterium rupense이상위우점종으로 나타났으며 병원균인 Arcobacter cryaerophilus는 제제처리 후 중류에서는 제거되는 효과를 보였다.

Dongchun, one of the representative streams in urban area, is a downstream that is connected to Hogyechun, Bujeonchun, Jeonpochun, Danggamchun, and Gayachun as its upstream. Hogyechun has been mostly covered with concrete structures for decades, causing sewage pollution from the upstream, overflow of the downstream region and other serious pollution that gave rise to many civil complaints from the residents nearby. In this study, we analyzed 3 stations, including control station for water quality and malodor changes of Hogyechun after applying the microbial augmentation (BM-2) for a few months including the rainy season. Amounts (g/h) of DO in the middle site (Middle) and the downstream site (Borim) increased by 1.7 times compared with the upstream site (Chuhae) after augmentation for about 2 months. Amounts (g/h) of COD and $NO_3{^-}N$ decreased by 2 and 1.7 times, respectively, in the middle and downstream sites while SS increased by 7.5 and 22 times in the middle and downstream sites, respectively. Moreover, odor removal efficiencies at the middle and downstream sites were 65% and 19%, respectively, indicating the microbial activity in reduction of malodor in the polluted stream. The dominant microbial species of the sampling sites were Hydrogenophaga caeni, Sphaerotilus natans, Acidovorax radicis, Acidovorax delafieldii, and Cloacibacterium rupense. Densities of the two species Sphaerotilus natans and Acidovorax delafieldii were significantly increased in the middle site after augmentation which possessed potential odor removal and denitrification activity, respectively. Potential pathogens (e.g., Arcobacter cryaerophilus) were also removed from the middle site after the implementation.



연구 과제 주관 기관 : 부산녹색환경지원센터, 한국해양대학교


  1. Allen, T.D., Lawson, P.A., Collins, M.D., Falsen, E., and Tanner, R.S. 2006. Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int. J. Syst. Evol. Microbiol. 56, 1311-1316.
  2. American Public Health Association (APHA). 2005. American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; Authors: Washington, DC, USA.
  3. Belousova, E.V., Chernousova, E.Y., Dubinina, G.A., Tourova, T.P., and Grabovich, M.Y. 2013. Detection and analysis of sulfur metabolism genes in Sphaerotilus natans subsp. sulfidivorans representatives. Microbiology 82, 586-593.
  4. Biovankorea. 2010. Microbial agent effective in wastewater treatment and its manufacturing methods and wastewater treatment technology. Korea Patent. No. 10-2010-0089906
  5. Cao, S.J., Deng, C.P., Li, B.Z., Dong, X.Q., and Yuan, H.L. 2010. Cloacibacterium rupense sp. nov., isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 60, 2023-2026.
  6. Chang, W.S., Park, J.S., Son, S.H., and Lee, W.S. 2005. Development of polluted streams treatment technology with rapid purification coagulant using reformed steel slag by SAP method 2005 Proceed. 2005 Fall Joint Conference of Korea Drinking Water and Wastewater Society and Korea Water Environment Society, Gwangju.
  7. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer. BMC Microbiol. 10, 101.
  8. Chung, Y.J. and Im, K.S. 2006. Purification of stream water quality by using rope media filter. J. Korean Soc. Water Quality 22, 238-243.
  9. Chung, B.S., Ryu, S.H., Park, M., Jeon, Y., Chung, Y.R., and Jeon, C.O. 2007. Hydrogenophaga caeni sp. nov., isolated from activated sludge Int. J. Syst. Evol. Microbiol. 57, 1126-1130.
  10. Davidson, D., Beheshti, B., and Mittelman, M.W. 1996. Effects of Arthrobacter sp., Acidovorax delafieldii, and Bacillus megaterium colonisation on copper solvency in a laboratory reactor. J. Bioadhesion Biofilm Res. 9, 279-292.
  11. Ehsani, E., Jauregui, R., Geffers, R., Jarek, M., Boon, N., Pieper, D.H., and Vilchez-Vargas, R. 2015. First draft genome sequence of the Acidovorax caeni sp. nov. type strain R-24608 (DSM 19327). Genome Announc. 3, e01378-15.
  12. Figueras, M.J., Levican, A., Pujol, I., Ballester, F., Rabada Quilez, M.J., and Gomez-Bertomeu, F. 2014. A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New Microbes New Infect. 2, 31-37.
  13. Gan, H.M., Chew, T.H., Tay, Y.L., Lye, S.F., and Yahyac, A. 2012. Genome sequence of Hydrogenophaga sp. strain PBC, a 4-aminobenzenesulfonate-degrading bacterium. J. Bacteriol. 194, 4759-4760.
  14. Hamady, M., Lozupone, C., and Knight, R. 2010. Fast Uni Frac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and Phylo Chip data. ISME J. 4, 17-27.
  15. Hunt, P.G., Stone, K.C., Humenik, F.J., Matheny, T.A., and Johnson, M.H. 1999. In-stream wetland mitigation of nitrogen contamination in a USA coastal plain stream. J. Environ. Quality 28, 249-256.
  16. Hur, M., Kim, Y., Song, H.R., Kim, J.M., Choi, Y.I., and Yi, H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77, 7611-7619.
  17. Jiao, Y., Zhao, Q., Jin, W., Hao, X., and You, S. 2011. Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water. J. Bioresour. Technol. 102, 990-995.
  18. Jung, S.R. and Lin, Y.F. 2004. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environ. Poll. 127, 291-301.
  19. Kim, M.K., Choi, J.S., Kim, S.J., and Kim, H.G. 2013. Improvement of medium and small urban stream water quality and applicability of design factor using biological and physicochemical processing. J. Kor. Soc. Environ. Eng. 35, 509-517.
  20. Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, S.H., Kim, B.S., Song, B., Chun, J., Chang, J.S., Kim, H.G., and Koh, S.C. 2013. An eco-friendly treatment of tannery wastewater using bioaugmentation with a novel microbial consortium. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 48, 1732-1739.
  21. Kim, I.S., Ekpeghere, K.I., Ha, S.Y., Kim, B.S., Song, B., Chun, J., Kim, J.T., Kim, H.G., and Koh, S.C. 2014. Full-scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 49, 355-364.
  22. Kim, B.S., Kim, J.N., Yoon, S.H., Chun, J., and Cerniglia, C.E. 2012. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 18, 310-320.
  23. Kim, S.J. and Lee, S.S. 2010. The development of treatment system for removing the low concentrated nitrogen and phosphorus using phototrophic bacteria and media. Korean J. Microbiol. 46, 27-32.
  24. Koh, S.C. and Ekpeghere, K.I. 2009. Remediation and improvement of contaminated coastal sediment using EM mud balls. Res. Report Coastal Environ. 8, 135-159.
  25. Koh, S.C., Kim, I.S., Ekpeghere, K.I., Ha, S.Y., and Kim, S.H. 2015. Eco-friendly restoration of constructed sea stream in Yeongdo innovation complex. In Preparation.
  26. Li, D., Rothballer, M., Schmid, M., Esperschutz, J., and Hartmann, A. 2011. Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int. J. Syst. Evol. Microbiol. 61, 2589-2594.
  27. Mulder, E.G. and Deinema, M.H. 1992. The sheathed bacteria. In Balows, A., Trupper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.). The prokaryotes, pp. 2612-2624. Springer-Verlag, Berlin, Germany.
  28. National Institute of Environment. 2007. Official Methods of Odor Analysis.
  29. Pellegrin, V., Juretschko, S., Wagner, M., and Cottenceau, G. 1999. Morphological and biochemical properties of a Sphaerotilus sp. isolated from paper mill slimes. Appl. Environ. Microbiol. 65, 156-162.
  30. le Roux, L.D., Johnson, M.E., Jason So, M., and de los Reyes, F.L. 2010. Use of molecular tools to identify microbial communities in a full scale biotrickling filter treating odors from a municipal WWTP. Proceed. Water Environ. Federation 3, 855-863.
  31. van Veen, W.L., Mulder, E.G., and Deinema, M.H. 1978 The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42, 329-356.
  32. Willems, A., Falsen, E., Pot, B., Jantzen, E., Hoste, B., Vandamme, P., Gillis, M., Kersters, K., and De, L.J. 1990. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol. 40, 384-398.
  33. Yang, K.H. 2003. Water treatment system using titanium bioball. Korea Patent. No. 10-2003-0102359.