DOI QR코드

DOI QR Code

Participation of protein disulfide isomerase 2 in the tolerance against mercury toxicity in Schizosaccharomyces pombe

수은 독성에 대한 Schizosaccharomyces pombe 단백질2황화물이성질화효소 2의 저항성

  • Choi, Jiye (Department of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Lim, Chang-Jin (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Kim, Kyunghoon (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • 최지예 (강원대학교 자연과학대학 생명과학과) ;
  • 임창진 (강원대학교 자연과학대학 생화학과) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학과)
  • Received : 2015.11.24
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

The present work was undertaken to address the role of protein disulfide isomerase 2 (Pdi2) in the mercury-tolerance of Schizosaccharomyces pombe, using the Pdi2-overexpressing recombinant plasmid pYPDI2 and the corresponding vector plasmid pRS316. When exposed to mercuric chloride, the PDI2 overepxression cells grew significantly better than the vector control cells. They revealed the lower levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO), when incubated with mercuric chloride for 6 h, than the vector control cells. The PDI2 overepxression cells contained the higher levels of total glutathione (GSH) and superoxide dismutase (SOD) activity than the vector control cells, after 6 h of incubation in mercuric chloride. However, the PDI2 overepxression cells contained similar levels of glutathione peroxidase (GPx) activities, compared to those of the vector control cells. Taken together, the S. pombe Pdi2 promotes the tolerance against mercury toxicity through up-regulating total GSH and SOD and subsequently attenuating ROS and NO elevations.

Keywords

Schizosaccharomyces pombe;glutathione;mercury;protein disulfide isomerase;reactive oxygen species;superoxide dismutase

Acknowledgement

Supported by : Kangwon National University

References

  1. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. De, A.P.A.M., Verissimo-Filho, S., Guimaraes, L.L., Silva, A.C., Takiuti, J.T., and Lopes, L.R. 2011. Protein disulfide isomerase redox-dependent association with p47 (phox): evidence for an organizer role in leukocyte NADPH oxidase activation. J. Leukoc. Biol. 90, 799-810. https://doi.org/10.1189/jlb.0610324
  3. Genestra, M. 2007. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 19, 1807-1819. https://doi.org/10.1016/j.cellsig.2007.04.009
  4. Gilbert, H.F. 1997. Protein disulfide isomerase and assisted protein folding. J. Biol. Chem. 272, 29399-29402. https://doi.org/10.1074/jbc.272.47.29399
  5. Gueldry, O., Lazard, M., Delort, F., Dauplais, M., Grigoras, I., Blanquet, S., and Plateau, P. 2003. Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur. J. Biochem. 270, 2486-2496. https://doi.org/10.1046/j.1432-1033.2003.03620.x
  6. Jan, A.T., Ali, A., and Haq, Q. 2011. Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. J. Postgrad. Med. 57, 72-77. https://doi.org/10.4103/0022-3859.74298
  7. Jeenes, D.J., Pfaller, R., and Archer, D.B. 1997. Isolation and characterization of a novel stress-inducible PDI-family gene from Aspergillus niger. Gene 193, 151-156. https://doi.org/10.1016/S0378-1119(97)00098-X
  8. Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174. https://doi.org/10.3109/19396368.2012.681420
  9. Kig, C. and Temizkan, G. 2009. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238, 59-66. https://doi.org/10.1007/s00709-009-0074-3
  10. Kim, S.J., Choi, Y.S., Kim, H.G., Park, E.H., and Lim, C.J. 2006. Cloning, characterization and regulation of a protein disulfide isomerase from the fission yeast Schizosaccharomyces pombe. Mol. Biol. Rep. 33, 187-196. https://doi.org/10.1007/s11033-006-0012-9
  11. Lee, E.H., Hyun, D.H., Park, E.H., and Lim, C.J. 2010. A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol. Biol. Rep. 37, 3663-3671. https://doi.org/10.1007/s11033-010-0018-1
  12. Lee, Y.Y., Kim, H.G., Jung, H.I., Shin, Y.H., Hong, S.M., Park, E.H., Sa, J.H., and Lim, C.J. 2002. Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311.
  13. Lenartova, V., Holovska, K., and Javorsky, P. 1998. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol. Ecol. 27, 319-325. https://doi.org/10.1111/j.1574-6941.1998.tb00548.x
  14. Lu, D.P. and Christopher, D.A. 2008. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genomics 280, 199-210. https://doi.org/10.1007/s00438-008-0356-z
  15. Lund, B.O., Miller, D.M., and Woods, J.S. 1991. Mercury-induced $H_2O_2$ production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem. Pharmacol. 42 Suppl, S181-S187. https://doi.org/10.1016/0006-2952(91)90408-W
  16. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
  17. Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  18. Saloheimo, M., Lund, M., and Penttila, M.E. 1999. The protein disulfide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol. Gen. Genet. 262, 35-45. https://doi.org/10.1007/s004380051057
  19. Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  20. Sorensen, B.S., Horsman, M.R., Vorum, H., Honore, B., Overgaard, J., and Alsner, J. 2009. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother. Oncol. 92, 443-449. https://doi.org/10.1016/j.radonc.2009.05.019
  21. Tanaka, S., Uehara, T., and Nomura, Y. 2000. Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J. Biol. Chem. 275, 10388-10393. https://doi.org/10.1074/jbc.275.14.10388
  22. Tian, G., Kober, F.X., Lewandrowski, U., Sickmann, A., Lennarz, W.J., and Schindelin, H. 2008. The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J. Biol. Chem. 283, 33630-33640. https://doi.org/10.1074/jbc.M806026200
  23. Vatamaniuk, O.K., Bucher, E.A., Ward, J.T., and Rea, P.A. 2001. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem. 276, 20817-20820. https://doi.org/10.1074/jbc.C100152200
  24. Westwater, J., McLaren, N.F., Dormer, U.H., and Jamieson, D.J. 2002. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19, 233-239. https://doi.org/10.1002/yea.835
  25. Whittaker, S.G., Smith, D.G., Foster, J.R., and Rowland, I.R. 1990. Cytochemical localization of mercury in Saccharomyces cerevisiae treated with mercuric chloride. J. Histochem. Cytochem. 38, 823-827. https://doi.org/10.1177/38.6.2186088
  26. Wilkins, B. and Gilbert, H.F. 2004. Protein disulfide isomerase. Biochem. Biophys. Res. Commun. 1699, 35-44.
  27. Zhang, H., He, J., Ji, Y., Kato, A., and Song, Y. 2008. The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell. Mol. Biol. Lett. 13, 38-48.