DOI QR코드

DOI QR Code

Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate

저분자 알긴산의 효소적 생산과 지방세포 분화 억제 효과

  • Received : 2015.08.21
  • Accepted : 2015.10.13
  • Published : 2015.12.30

Abstract

In this study, we investigated the extraction condition of alginate from Laminaria japonica, the enzymatic degradation of the extracted alginate, and the inhibitory activity of the degraded alginate on the differentiation of 3T3-L1 preadipocytes. The optimal conditions for the efficient extraction, precipitation, and recovery of alginate from the brown seaweed L. japonica were 1% for Na2CO3 concentration, 80℃ for extraction temperature, and ethanol for precipitation solvent. In the enzymatic reaction for the production of low-molecular-weight alginate (LMWA) by using alginate lyase from Flavobacterium sp., the initial concentration of Laminaria alginate was 3%. The low-molecular-weight degree from alginate was independent with the enzyme concentration, and the optimal concentration of alginate lyase was found to be 5 unit/ml. Through the enzymatic reaction with 5 unit/ml of alginate lyase at 37℃ for 3 hr, the viscosity and molecular weight of LMWA were 4.5 cp and 307 kDa, respectively. Treatment with LMWA significantly suppressed the accumulation of lipid droplet and triglyceride in 3T3-L1 preadipocytes with a dose-dependent manner. Therefore, it seems that LMWA treatment could inhibit the differentiation of 3T3-L1 preadipocytes. These results indicate that LMWA or the degraded alginate produced by alginate lyase enzyme can be useful for the development of anti-obesity biosubstances.

Keywords

3T3-L1 preadipocyte;adipocyte differentiation;alginate lyase;Laminaria japonica;lowmolecular-weight alginate

References

  1. Chan, S. W., Kim, K. B. W. R., Kim, D. H., Jung, S. A., Kim, H. J., Jeong, D. H., Jung, H. Y., Lim, S. M., Hong, Y. K. and Ahn, D. H. 2012. Optimization of conditions for the production of aginate-degrading crude enzyme from Vibrio crassostreae PKA 1002. Kor. J. Microbiol. Biotechnol. 40, 243-249. https://doi.org/10.4014/kjmb.1206.06003
  2. Jeong, H. J., Lee, S. A., Moon, P. D., Na, H. J., Park, R. K., Um, J.Y., Kim, H. M. and Hong, S. H. 2006. Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. Clin. Exp. Allergy 36, 785-794. https://doi.org/10.1111/j.1365-2222.2006.02508.x
  3. Inoue, A., Takadono, K., Nishiyama, R., Tajima, K., Kobayashi, T. and Ojima, T. 2014. Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli. Mar. Drugs 12, 4693-4712. https://doi.org/10.3390/md12084693
  4. Hwang, H. J., Pyeun, J. H. and Nam, T. J. 2000. The effects of alginic acid on 3T3-L1 cell’s differentiation. J. Kor. Fish. Soc. 33, 541-545.
  5. Hirst, E. L. and Rees, D. A. 1965. The structure of alginic acid. Part V. isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J. Chem. Soc. 7, 1182-1187.
  6. Haug, A., Larsen, B. and Smidsrod, O. 1967. Studies on the sequence of uronic acid residues in alginic acid. Acta. Chemica. Scandinabia 21, 691-704. https://doi.org/10.3891/acta.chem.scand.21-0691
  7. Guven, K. C., Ozsoy, Y. and Ulutin, O. N. 1991. Anticoagulant, fibrinotic and antiaggregant activity of carrageenans and alginic acid. Biotan. Marina 34, 429-435.
  8. Davidson, I. W., Sutherland, I. W. and Lawson, C. J. 1976. Purification and properties of an alginate lyase from a marine bacterium. Biochem. J. 159, 707-713. https://doi.org/10.1042/bj1590707
  9. Chan, S. W., Kim, K. B. W. R., Kim, D. H., Jung, S. A., Kim, H. J., Jeong, D. H., Jung, H. Y., Kang, B. K., Bark, S. W., Lim, S. M., Hong, Y. K. and Ahn, D. H. 2013. Optimization of conditions for the production and properties of alginate-degradingcrude enzyme from Shewanella oneidensis PKA 1008. Kor. J. Microbiol. Biotechnol. 41, 372-378. https://doi.org/10.4014/kjmb.1212.12002
  10. Lim, Y. S. and You, B. J. 2007. Effects of hydrolysis temperature on the distribution of the molecular weights of alginates prepared from sea tangle, Laminaria japonica. Kor. Fish. Soc. 40, 187-192.
  11. Lim, Y. S. and You, B. J. 2006. Effects of hydrolysis pH on distribution of molecular weights of alginate of sea tangle Laminaria japonica. J. Kor. Fish. Soc. 39, 313-317.
  12. Lee, J. H., Bae, M. J., Kim, Y. C. and Nam, S. W. 2009. Identification and characterization of alginate lyase producing Pseudomonas sp. N7151-6. Kor. J. Microbiol. Biotechnol. 37, 350-354.
  13. Kim, Y. Y. and Cho, Y. J. 2000. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicas by thermal decomposition. J. Kor. Fish. Soc. 33, 325-330.
  14. Kim, S. W., Kim, G. D. and Nam, S. W. 2015. Coexpression of alginate lyase with hyperthermophilic archaea chaperonin in E. coli. J. Life Sci. 25, 130-135. https://doi.org/10.5352/JLS.2015.25.2.130
  15. Joh, I. S., Kim, I. H., Kwon, M. J. and Nam, T. J. 2015. Dietary effects of polymannuronate added to hamburger buns on lipid metabolism in rats. Kor. J. Fish, Aquat. Sci. 48, 187-192.
  16. Kim, H. S. 2013. Synergistic effect of acetylalginate esterase and alginate lyase on the degradation of acetylalginate from Pseudomonas aeruginosa ATCC 39324. J. Life Sci. 23, 1420-1427. https://doi.org/10.5352/JLS.2013.23.12.1420
  17. Kim, E. J., Fathoni, A., Jeong, G. T., Jeong, H. D., Nam, T. J., Kong, I. S. and Kim, J. K. 2013. A novel alginate-and laminarin-degrading bacterium for the reutilization of brown- seaweed waste. J. Environ. Manage. 30, 153-159.
  18. Kim, I. H. and Nam, T. J. 2004. The effects of polymannuronates on leptin in 3T3-L1 adipocytes. J. Kor. Fish. Soc. 37, 372-379.
  19. Yoon, M. O., Lee, S. C., Rhim, J. W. and Kim, J. M. 2004. Comparison of alginic acid yields and viscosity by different extraction conditions from various seaweeds (Laminaria religiosa, Hizikia fusiforme, and Undaria pinnatifida). J. Kor. Soc. Food. Sci. Nutr. 33, 747-752. https://doi.org/10.3746/jkfn.2004.33.4.747
  20. Ueno, M. and Oda, T. 2014. Biological activities of alginate. Adv. Food Nutr. Res. 72, 95-112. https://doi.org/10.1016/B978-0-12-800269-8.00006-3
  21. Thomas, F., Lundqvist, L. C., Jam, M., Jeudy, A., Barbeyron, T., Sandstrom, C., Michel, G. and Czizek, M. 2013. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 288, 23021-23037. https://doi.org/10.1074/jbc.M113.467217
  22. Syad, A. N., Shunmugiah, K. P. and Kasi, P. D. 2013. Antioxidant and anti-cholinesterase activity of Sargassum wightii. Pharm. Biol. 51, 1401-1410. https://doi.org/10.3109/13880209.2013.793721
  23. Sellimi, S., Younes, I., Ayed, H. B., Maalehj, H., Montero, V., Rinaudo, M., Dahia, M., Mechicho, T., Hajji, M. and Nasri, M. 2015. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a tunisian brown seaweed. Int. J. Biol. Macromol. 72, 1358-1367. https://doi.org/10.1016/j.ijbiomac.2014.10.016
  24. Paxman, J. R., Richardson, J. C., Dettmar, P. W. and Corfe, B. M. 2008. Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: a pilot study. Nutr. Res. 28, 501-505. https://doi.org/10.1016/j.nutres.2008.05.008