DOI QR코드

DOI QR Code

Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer

Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선

  • Jung, Haeng-Yun (Photonic-Bio Research Center, Korea Photonics Technology Institute) ;
  • Ki, Hyun-Chul (Photonic-Bio Research Center, Korea Photonics Technology Institute) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • 정행윤 (한국광기술원 광바이오연구센터) ;
  • 기현철 (한국광기술원 광바이오연구센터) ;
  • 구할본 (전남대학교 전기공학과)
  • Received : 2014.12.22
  • Accepted : 2015.02.02
  • Published : 2015.03.01

Abstract

Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

References

  1. B. O'Regan, M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. Gratzel, J. Photochem. Photobiol. A: Chem., 164, 3 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.023
  3. T. Kawashima, H. Matsui, and N. Tanabe, Thin Solid Films, 445, 241 (2003). https://doi.org/10.1016/S0040-6090(03)01169-6
  4. T. Y. Cho, C. W. Han, and S. G. Yoon, J. Alloy. Compd., 578, 609 (2013). https://doi.org/10.1016/j.jallcom.2013.07.027
  5. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, Thin Solid Films, 472, 242 (2005). https://doi.org/10.1016/j.tsf.2004.07.083
  6. H. G. Yun, Y. S. Jun, J. D. Kim, B. S. Bae, and M. G. Kang, Appl. Phys. Lett., 93, 133311 (2008). https://doi.org/10.1063/1.2996017
  7. M. Biancardo, K. West, and F. C. Krebs, J. Photochem. Photobiol. A: Chem., 187, 395 (2007). https://doi.org/10.1016/j.jphotochem.2006.11.008
  8. V. Vijayakumar, A. D. Pasquier, and D. P. Birnie III, Sol. Energ. Mat. Sol. C., 95, 2120 (2011). https://doi.org/10.1016/j.solmat.2011.03.010
  9. X. Huang, P. Shen, B. Zhao, X. Feng, S. Jiang, H. Chen, H. Li, and S. Tan, Sol. Energ. Mat. Sol. C., 94, 1005 (2010). https://doi.org/10.1016/j.solmat.2010.02.005
  10. X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang, and D. Zou, Appl. Phys. Lett., 90, 073501 (2007). https://doi.org/10.1063/1.2475623
  11. C. H. Park, J. Y. Choi, M. S. Choi, Y. K. Kim, and H. J. Lee, Surf. Coat. Technol., 197, 223 (2005). https://doi.org/10.1016/j.surfcoat.2004.11.039
  12. N. Koide, A. Islam, Y. Chiba, and L. Han, J. Photochem. Photobio. A Chem., 182, 296 (2006). https://doi.org/10.1016/j.jphotochem.2006.04.030