DOI QR코드

DOI QR Code

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics

알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성

  • Yoon, Jea-Jung (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Chun, Myoung-Pyo (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, San (Materials Science and Engineering, Korea University)
  • 윤제정 (한국세라믹기술원 나노IT소재팀) ;
  • 전명표 (한국세라믹기술원 나노IT소재팀) ;
  • 남산 (고려대학교 신소재공학과)
  • Received : 2015.01.30
  • Accepted : 2015.02.10
  • Published : 2015.03.01

Abstract

Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.

References

  1. N. Claussen, J. Am. Ceram. Soc., 59, 51 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09387.x
  2. W. C. Moffatt and H. K. Bowen, J. Mater. Sci., 24, 3984 (1989). https://doi.org/10.1007/BF01168961
  3. K. H. Hwang and H. Kim, J. Kor. Ceram. Soc., 25, 230 (1988).
  4. M.M.R. Boutz, A.J.A. Winnubst, B. Van. Langerak, R.J. M. Olde Scholtenhuis, K. Kreuwel, and A. J. Burggraaf, J. Mater. Sci., 30, 1854 (1995). https://doi.org/10.1007/BF00351622
  5. T. K. Gupta, F. F. Lange, and J. H. Bechtold, J. Mater. Sci., 13, 1464 (1978). https://doi.org/10.1007/BF00553200
  6. F. Golestani-fard, M. Mazaheri, M. Aminzare, and T. Ebadza-deh, J. Eur. Ceram. Soc., 31, 2593 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.022
  7. N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09237.x
  8. Y. S. Choi and Y. H. Kim, J. Kor. Ceram. Soc., 28, 400 (1991).
  9. J. H Lee and H. C. Park, J. Kor. Ceram. Soc., 33, 1185 (1966).
  10. Y. G. Jung and S. C. Choi, J. Kor. Ceram. Soc., 35, 436 (1988).
  11. K. Tsukuma, Am. Ceram. Soc., 65, 1396 (1986).
  12. S. R. Witek and E. P. Butter, J. Am. Ceram. Soc., 69, 529 (1986).
  13. T. W. Coyle and W. S. Coblenz, J. Am. Ceram. Soc., 71, 88 (1989).
  14. B. B. Vleugels, J. Mater. Sci., 380, 215 (2004). https://doi.org/10.1016/j.msea.2004.03.065
  15. B. R. Cho, J. H. Chae, B. L. Kim, and J. B. Kang, Mater. Sci. Forum, 724, 254 (2012).
  16. W. J. Nellis and J. D. Katz, J. Mater. Sci., 11, 114 (1996).