DOI QR코드

DOI QR Code

Simulation Method of Temperature Dependent Threshold Voltage Shift in Metal Oxide Thin-film Transistors

온도에 의한 산화물 박막트랜지스터의 문턱전압 이동 시뮬레이션 방안

  • Kwon, Seyong (Department of Electronics Engineering, Seoul National University of Science and Technology) ;
  • Jung, Taeho (Department of Electronics Engineering, Seoul National University of Science and Technology)
  • 권세용 (서울과학기술대학교 전자공학과) ;
  • 정태호 (서울과학기술대학교 전자공학과)
  • Received : 2014.10.22
  • Accepted : 2015.02.04
  • Published : 2015.03.01

Abstract

In this paper, we propose a numerical method to model temperature dependent threshold voltage shift observed in metal oxide thin-film transistors (TFTs). The proposed model is then implemented in AIM-SPICE circuit simulation tool. The proposed method consists of modeling the well-known stretched-exponential time dependent threshold voltage shift and their temperature dependent coefficients. The outputs from AIM-SPICE tool and the stretched-exponential model at different temperatures in the literature are compared and they show a good agreement. Since metal oxide TFTs are the promising candidate for flat panel displays, the proposed method will be a good stepping stone to help enhance reliability of fast-evolving display circuits.

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. K. J. Yang and D. Y. Yoon, Korean Chem. Eng. Res., 48, 737 (2010).
  2. T. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 341 (2013).
  3. H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Solid-State Electronics, 47, 2261 (2003). https://doi.org/10.1016/S0038-1101(03)00208-9
  4. H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. D. Leeuw, M. Muccini, and K. Mllen, Polym. Adv. Technol., 16, 227 (2005). https://doi.org/10.1002/pat.558
  5. S. C. Deane, R. B. Wehrspohn, and M. J. Powell, Phys. Rev. B, 58, 19 (1998). https://doi.org/10.1103/PhysRevA.58.R19
  6. T. Jung, Proc. 6th Int. Conf. on Convergence and Hybrid Information Technology (eds. G. Lee, D. Howard, J. J. Kang, and D. Slezak) (ICHIT 2012, Daejeon, Korea, 2012) p. 453.
  7. S. C. Deane, R. B. Wehrspohn, and M. J. Powell, Phys. Rev. B, 58, 12625 (1998). https://doi.org/10.1103/PhysRevB.58.12625
  8. D. Gupta, S. H. Yoo, C. H. Lee, and Y. T. Hong, IEEE Trans. on Electron Devices, 58, 1995 (2011). https://doi.org/10.1109/TED.2011.2138143
  9. M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, Appl. Phys. Lett., 51, 1242 (1987). https://doi.org/10.1063/1.98692
  10. F. R. Libsch and J. Kanicki, Appl. Phys. Lett., 62, 1286 (1993). https://doi.org/10.1063/1.108709