DOI QR코드

DOI QR Code

Antimicrobial Cyclic Peptides for Plant Disease Control

  • Lee, Dong Wan (Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University) ;
  • Kim, Beom Seok (Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University)
  • Received : 2014.08.07
  • Accepted : 2014.11.25
  • Published : 2015.03.01

Abstract

Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H. and Thonart, P. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91:551-561.
  2. Andreu, D., Merrifield, R., Steiner, H. and Boman, H. 1983. Solid-phase synthesis of cecropin A and related peptides. Proc. Natl. Acad. Sci. U.S.A. 80:6475-6479. https://doi.org/10.1073/pnas.80.21.6475
  3. Arellano, M., Duran, A. and Perez, P. 1996. Rho 1 GTPase activates the (1-3) beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. Eur. Mol. Biol. Organ. J. 15:4584.
  4. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
  5. Bassarello, C., Lazzaroni, S., Bifulco, G., Cantore, P. L., Iacobellis, N. S., Riccio, R., Gomez-Paloma, L. and Evidente, A. 2004. Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J. Nat. Prod. 67:811-816. https://doi.org/10.1021/np0303557
  6. Bockus, A. T., McEwen, C. M. and Lokey, R. S. 2013. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr. Top. Med. Chem. 13:821-836. https://doi.org/10.2174/1568026611313070005
  7. Boger, D. L., Keim, H., Oberhauser, B., Schreiner, E. P. and Foster, C. A. 1999. Total synthesis of HUN-7293. J. Am. Chem. Soc. 121:6197-6205. https://doi.org/10.1021/ja990918u
  8. Bulawa, C. E. 1993. Genetics and molecular biology of chitin synthesis in fungi. Annu. Rev. Microbiol. 47: 505-534. https://doi.org/10.1146/annurev.mi.47.100193.002445
  9. Burr, T., Matteson, M., Smith, C., Corral-Garcia, M. and Huang, T.-C. 1996. Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biol. Control 6:151-157. https://doi.org/10.1006/bcon.1996.0019
  10. De Lucca, A. J. and Walsh, T. J. 1999. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43:1-11.
  11. de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A. and Raaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69:7161-7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
  12. Debono, M. and Gordee, R. S. 1994. Antibiotics that inhibit fungal cell wall development. Annu. Rev. Microbiol. 48:471-497. https://doi.org/10.1146/annurev.mi.48.100194.002351
  13. Diederich, F., Stang, P. J. and Tykwinski, R. R. 2008. Modern supramolecular chemistry: strategies for macrocycle synthesis. John Wiley & Sons.
  14. Edman, P. 1959. Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28:69-96. https://doi.org/10.1146/annurev.bi.28.070159.000441
  15. Edwards, S. and Seddon, B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. Appl. Microbiol. 91:652-659. https://doi.org/10.1046/j.1365-2672.2001.01430.x
  16. Georgopapadakou, N. 1992. Emerging Targets in Antibacterial and Antifungal Chemotherapy. Champman and Hall, London and New York, pp. 476-494.
  17. Georgopapadakou, N. H. and Tkacz, J. S. 1995. The fungal cell wall as a drug target. Trends Microbiol. 3:98-104. https://doi.org/10.1016/S0966-842X(00)88890-3
  18. Gooday, G. 1977. Biosynthesis of the Fungal Wall-Mechanisms and Implications The First Fleming Lecture. J. Gen. Microbiol. 99:1-11. https://doi.org/10.1099/00221287-99-1-1
  19. Gozalbo, D., Elorza, M. V., Sanjuan, R., Marcilla, A., Valentin, E. and Sentandreu, R. 1993. Critical steps in fungal cell wall synthesis: strategies for their inhibition. Pharmacol. Ther. 60:337-345. https://doi.org/10.1016/0163-7258(93)90015-6
  20. Grgurina, I., Bensaci, M., Pocsfalvi, G., Mannina, L., Cruciani, O., Fiore, A., Fogliano, V., Sorensen, K. N. and Takemoto, J. Y. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob. Agents Chemother. 49:5037-5045. https://doi.org/10.1128/AAC.49.12.5037-5045.2005
  21. Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, H. G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370. https://doi.org/10.1021/jf00080a031
  22. Han, J. H., Hwang, I. C., Cho, S. H., Jang, C., Kim, N. G., Yu, S. H., Yu, Y. M. and Kim, S. B. 2008. Description of Streptomyces neopeptinius sp. nov., an actinobacterium with broad spectrum antifungal activities. J. Microbiol. 46:295-299. https://doi.org/10.1007/s12275-008-0011-8
  23. Hartland, R., Emerson, G. and Sullivan, P. 1991. A secreted ${\beta}$-glucan-branching enzyme from Candida albicans. Proc. R. Soc. London, B 246:155-160. https://doi.org/10.1098/rspb.1991.0138
  24. Heins, S. D., Jimenez, D. R., Manker, D. C., Marrone, P. G., McCoy, R. J. and Orjala, J. E. 2000. Strain of bacillus for controlling plant diseases and corn rootworm. US Patent 6060051 A.
  25. Heisey, R. M., Huang, J., Mishra, S. K., Keller, J. E., Miller, J. R., Putnam, A. R. and D'Silva, T. D. 1988. Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36:1283-1286. https://doi.org/10.1021/jf00084a039
  26. Horton, D. A., Bourne, G. T. and Smythe, M. L. 2002. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput.-Aided Mol. Des. 16:415-431. https://doi.org/10.1023/A:1020863921840
  27. Hur, G. H., Vickery, C. R. and Burkart, M. D. 2012. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29:1074-1098. https://doi.org/10.1039/c2np20025b
  28. Ikai, K., Shiomi, K., Takesako, K., Mizutani, S., Yamamoto, J., Ogawa, Y., Ueno, M. and Kato, I. 1991a. Structures of aureobasidins B to R. J. Antibiot. 44:1187-1198. https://doi.org/10.7164/antibiotics.44.1187
  29. Ikai, K., Takesako, K., Shiomi, K., Moriguchi, M., Umeda, Y., Yamamoto, J., Kato, I. and Naganawa, H. 1991b. Structure of aureobasidin A. J. Antibiot. 44:925-933. https://doi.org/10.7164/antibiotics.44.925
  30. Ishidoh, K.-I., Kinoshita, H., Igarashi, Y., Ihara, F. and Nihira, T. 2014. Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp. J. Antibiot. 67:1-5. https://doi.org/10.1038/ja.2013.127
  31. Isono, K. and Suzuki, S. 1979. Polyoxins-pyrimidine nucleoside peptide antibiotics inhibiting fungal cell-wall biosynthesis. Heterocycles 13:333-351. https://doi.org/10.3987/S-1979-01-0333
  32. Joo, S. H. 2012. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 20:19. https://doi.org/10.4062/biomolther.2012.20.1.019
  33. Kajimura, Y. and Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot. 50:220-228. https://doi.org/10.7164/antibiotics.50.220
  34. Kharbanda, P. D., Coleman, R. N., Beatty, P. H., Jensen, S. E., Tewari, J. P. and Yang, J. 2003. Paenibacillus polymyxa strain ATCC 202127 for Biocontrol of Bacteria and Fungi. US Patent 6602500 B1.
  35. Kim, J.-C., Choi, G. J., Kim, H.-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2002. Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant Pathol. J. 18:102-105. https://doi.org/10.5423/PPJ.2002.18.2.102
  36. Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145.
  37. Kim, S.-K., Ubukata, M. and Isono, K. 2003. N-Acetylglycine side chain is critical for the antimicrobial activity of xanthostatin. J. Microbiol. Biotechnol. 13:998-1000.
  38. Kim, Y. S., Kim, H. M., Chang, C., Hwang, I. C., Oh, H., Ahn, J. S., Kim, K. D., Hwang, B. K. and Kim, B. S. 2007. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manage. Sci. 63:1208-1214. https://doi.org/10.1002/ps.1450
  39. Lavermicocca, P., Sante Iacobellis, N., Simmaco, M. and Graniti, A. 1997. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant Pathol. 50:129-140. https://doi.org/10.1006/pmpp.1996.0078
  40. Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M. and Valdivia, E. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Microbiol. 77:49-53.
  41. Leclere, V., Bechet, M., Adam, A., Guez, J.-S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  42. Lee, C.-h., Kim, S., Hyun, B., Suh, J., Yon, C., Kim, C. and Lim, Y. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J. Antibiot. 47:1402-1405. https://doi.org/10.7164/antibiotics.47.1402
  43. Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W. and Park, K. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49-58. https://doi.org/10.1007/s12600-012-0263-z
  44. Leenders, F., Stein, T. H., Kablitz, B., Franke, P. and Vater, J. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13:943-949. https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<943::AID-RCM591>3.0.CO;2-0
  45. Lim, T. H., Kwon, S. Y., Seo, H. W., Min, B. S. and Lim, C. H. 2007. Antifungal activity of valinomycin, a cyclodepsipeptide from Streptomyces padanus TH-04. Nat. Prod. Sci. 13:144-147.
  46. Lim, Y., Suh, J., Kim, S., Hyun, B., Kim, C. and Lee, C.-H. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J. Antibiot. 47:1406. https://doi.org/10.7164/antibiotics.47.1406
  47. Liu, X., Wang, J., Gou, P., Mao, C., Zhu, Z.-R. and Li, H. 2007. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 119:223-229. https://doi.org/10.1016/j.ijfoodmicro.2007.07.054
  48. Mhammedi, A., Peypoux, F., Besson, F. and Michel, G. 1982. Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J. Antibiot. 35:306. https://doi.org/10.7164/antibiotics.35.306
  49. Mizuhara, N., Kuroda, M., Ogita, A., Tanaka, T., Usuki, Y. and Fujita, K.-I. 2011. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg. Med. Chem. 19:5300-5310. https://doi.org/10.1016/j.bmc.2011.08.010
  50. Monroc, S., Badosa, E., Besalu, E., Planas, M., Bardaji, E., Montesinos, E. and Feliu, L. 2006a. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27:2575-2584. https://doi.org/10.1016/j.peptides.2006.05.001
  51. Monroc, S., Badosa, E., Feliu, L., Planas, M., Montesinos, E. and Bardaji, E. 2006b. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27:2567-2574. https://doi.org/10.1016/j.peptides.2006.04.019
  52. Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270:1-11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
  53. Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237. https://doi.org/10.1002/cbdv.200890111
  54. Moon, S. S., Chen, J. L., Moore, R. E. and Patterson, G. M. 1992. Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J. Org. Chem. 57:1097-1103. https://doi.org/10.1021/jo00030a013
  55. Murray, T., Leighton, F. C. and Seddon, B. 1986. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Lett. Appl. Microbiol. 3:5-7. https://doi.org/10.1111/j.1472-765X.1986.tb01534.x
  56. Nagiec, M. M., Nagiec, E. E., Baltisberger, J. A., Wells, G. B., Lester, R. L. and Dickson, R. C. 1997. Sphingolipid synthesis as a target for antifungal drugs complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272:9809-9817. https://doi.org/10.1074/jbc.272.15.9809
  57. Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M. and Sorensen, J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68:3416-3423. https://doi.org/10.1128/AEM.68.7.3416-3423.2002
  58. Nielsen, T. H. and Sorensen, J. 2003. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868. https://doi.org/10.1128/AEM.69.2.861-868.2003
  59. Ongena, M., Jacques, P., Tour, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69:29-38. https://doi.org/10.1007/s00253-005-1940-3
  60. Osada, H. and Isono, K. 1986. Purification and characterization of ascamycin-hydrolysing aminopeptidase from Xanthomonas citri. Biochem. J. 233:459-463. https://doi.org/10.1042/bj2330459
  61. Park, C. N., Lee, J. M., Lee, D. and Kim, B. S. 2008. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. J. Microbiol. Biotechnol. 18:880-884.
  62. Pedras, M. S. C., Ismail, N., Quail, J. W. and Boyetchko, S. M. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62:1105-1114. https://doi.org/10.1016/S0031-9422(02)00617-9
  63. Pergament, I. and Carmeli, S. 1994. Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett. 35:8473-8476. https://doi.org/10.1016/S0040-4039(00)74436-4
  64. Perkins, J., Guterman, S., Howitt, C., Williams, V. and Pero, J. 1990. Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. J. Bacteriol. 172: 3108-3116. https://doi.org/10.1128/jb.172.6.3108-3116.1990
  65. Perron, G. G., Zasloff, M. and Bell, G. 2006. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. London, B 273:251-256. https://doi.org/10.1098/rspb.2005.3301
  66. Peypoux, F., Bonmatin, J. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. https://doi.org/10.1007/s002530051432
  67. Peypoux, F., Pommier, M., Marion, D., Ptak, M., Das, B. and Michel, G. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39:636-641. https://doi.org/10.7164/antibiotics.39.636
  68. Reed, J. D., Edwards, D. L. and Gonzalez, C. F. 1997. Synthetic peptide combinatorial libraries: a method for the identification of bioactive peptides against phytopathogenic fungi. Mol. Plant-Microbe Interact. 10:537-549. https://doi.org/10.1094/MPMI.1997.10.5.537
  69. Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P. and Lokey, R. S. 2006. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128:2510-2511. https://doi.org/10.1021/ja0563455
  70. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  71. Satomi, T., Kusakabe, H., Nakamura, G., Nishio, T., Uramoto, M. and Isono, K. 1982. Neopeptins A and B, new antifungal antibiotics. Agric. Biol. Chem. 46:2621-2623. https://doi.org/10.1271/bbb1961.46.2621
  72. Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S. and van Tuinen, D. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 Isolated from the Sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71:6501-6507. https://doi.org/10.1128/AEM.71.11.6501-6507.2005
  73. Shai, Y. 1995. Molecular recognition between membrane-spanning polypeptides. Trends Biochemical Sci. 20:460-464. https://doi.org/10.1016/S0968-0004(00)89101-X
  74. Singh, A., Phougat, N., Kumar, M. and Chhillar, A. 2013. Antifungal proteins: potent candidate for inhibition of pathogenic fungi. Curr. Bioact. Compd. 9:101-112. https://doi.org/10.2174/22115528112019990007
  75. Singh, P. and Cameotra, S. S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends in Biotech. 22:142-146. https://doi.org/10.1016/j.tibtech.2004.01.010
  76. SirDeshpande, B. V. and Toogood, P. L. 1995. Mechanism of protein synthesis inhibition by didemnin B in vitro. Biochem. J. 34:9177-9184. https://doi.org/10.1021/bi00028a030
  77. Smits, G., C Kapteyn, J., van den Ende, H. and M Klis, F. 1999. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2:348-352. https://doi.org/10.1016/S1369-5274(99)80061-7
  78. Stall, R. E. and Seymour, C. P. 1983. Canker, a threat to citrus in the Gulf-Coast states. Plant Dis. 67:581-585. https://doi.org/10.1094/PD-67-581
  79. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  80. Strobel, G. A., Miller, R. V., Martinez-Miller, C., Condron, M. M., Teplow, D. B. and Hess, W. 1999. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919-1926. https://doi.org/10.1099/13500872-145-8-1919
  81. Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I. and Yamaguchi, H. 1991. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot. 44:919-924. https://doi.org/10.7164/antibiotics.44.919
  82. Tanaka, K., Ishihara, A. and Nakajima, H. 2014. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 Bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens. J. Agric. Food Chem. 62:1469-1476. https://doi.org/10.1021/jf404531t
  83. Thimon, L., Peyoux, F., Maget-Dana, R. and Michel, G. 1992. Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Am. Oil. Chem. Soc. 69:92-93. https://doi.org/10.1007/BF02635884
  84. Troskie, A. M. 2014. Tyrocidines, cyclic decapeptides produced by soil bacilli, as potent inhibitors of fungal pathogens. Thesis (PhD)-Stellenbosch University.
  85. Ubukata, M., Uramoto, M. and Isono, K. 1984. The structure of neopeptins, inhibitors of fungal cell wall biosynthesis. Tetrahedron Lett. 25:423-426. https://doi.org/10.1016/S0040-4039(00)99901-5
  86. Ubukata, M., Uramoto, M., Uzawa, J. and Isono, K. 1986. Structure and biological activity of neopeptins A, B and C, inhibitors of fungal cell wall glycan synthesis. Agric. Biol. Chem. 50:357-365. https://doi.org/10.1271/bbb1961.50.357
  87. Vijayakumar, E., Roy, K., Chatterjee, S., Deshmukh, S., Ganguli, B., Fehlhaber, H.-W. and Kogler, H. 1996. Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. J. Org. Chem. 61:6591-6593. https://doi.org/10.1021/jo960769n
  88. Wang, J., Yu, Y., Tang, K., Liu, W., He, X., Huang, X. and Deng, Z. 2010. Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl. Environ. Microbiol. 76:2335-2344. https://doi.org/10.1128/AEM.01790-09
  89. Xu, S. J. and Choi, W. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30:102-108. https://doi.org/10.5423/PPJ.OA.05.2013.0052
  90. Yoon, M. Y. and Kim, J. C. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29:1-9. https://doi.org/10.5423/PPJ.RW.05.2012.0072

Cited by

  1. Cultivable bacterial communities associated with roots of rose-scented geranium (Pelargonium graveolens) with the potential to contribute to plant growth vol.111, 2017, https://doi.org/10.1016/j.apsoil.2016.12.002
  2. Antifungal and Antiviral Cyclic Peptides from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020 vol.65, pp.25, 2017, https://doi.org/10.1021/acs.jafc.7b01238
  3. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance vol.6, 2015, https://doi.org/10.3389/fpls.2015.00900
  4. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity vol.48, pp.4, 2016, https://doi.org/10.1007/s00726-016-2176-5
  5. Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold vol.134, 2017, https://doi.org/10.1016/j.postharvbio.2017.08.001
  6. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease 2017, https://doi.org/10.1002/ps.4630
  7. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111817
  8. Antimicrobial activity of LFchimera synthetic peptide against plant pathogenic bacteria vol.50, pp.19-20, 2017, https://doi.org/10.1080/03235408.2017.1411173
  9. Understanding and designing head-to-tail cyclic peptides vol.109, pp.10, 2018, https://doi.org/10.1002/bip.23113
  10. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00302