Growth and mortality of the juvenile common octopus (Octopus vulgaris) in pipe- and tire-type shelters placed in flow-through seawater tanks

  • Kwon, Inyeong (Department of Fisheries Science, Graduate School, Chonnam National University) ;
  • Kim, Taeho (Division of Marine Technology, Chonnam National University)
  • Received : 2015.01.14
  • Accepted : 2015.02.23
  • Published : 2015.02.28


The common octopus, which has a high growth rate and high market price, is a prime candidate for commercial marine aquaculture operations. We evaluated the effectiveness of two types of shelters (pipe and tire types) for juvenile common octopus growing out in flow-through seawater tanks. Growth rates were evaluated in two experiments. The first experiment (Experiment 1) ran for 72 days, and the second (Experiment 2; replicated) ran for 46 days. Each trial included 40 octopuses fed a diet of frozen sardine (Sardinops melanostictus) and swimming crab (Portunustri tuberculatus) at 3-8% of body weight once every 3 days. In the two experiments, the respective specific growth rates were 0.3 and 0.04%/day in pipe-type shelters and 0.00 and 0.88%/day in tire-type shelters, while the respective percentage survivals were 80 and 80% in pipe-type shelters and 70 and 90% in tire-type shelters. Shelter type had little influence on the growth rate (P < 0.05).


  1. Aguado Gimenez F and Garcia Garcia B. 2002. Growth and food intake models in Octopus vulgaris Cuvier (1797) influence of body weight, temperature, sex and diet. Aquacult Int 10, 361-377. (doi: 10.1023/A:1023335024053)
  2. Anderson T. 1997. Habitat selection and shelter use by Octopus tetricus. Mar Ecol Prog Ser 150, 137-148.
  3. Baldrati G. 1989. Handling, marketing and processing of cephalopods in Italy. Ind Conserve 64, 353-355.
  4. Chapela A, Gonzalez AF, Dawe EG, Rocha F and Guerra A. 2006. Growth of common octopus (Octopus vulgaris) in cages suspended from rafts. Sci Mar 70, 121-129. (doi:10.3989/scimar.2006.70n1121)
  5. Collins KJ, Jensen AC, Lockwood PM and Lockwood SJ. 1994. Coastal structures, waste materials and fishery enhancement. Bull of Mar Sci 55, 1240-1250.
  6. Collins KJ, Jensen AC, Mallinson JJ, Roenelle V and Smith IP. 2002. Environmental impact assessment of a scarp tyre artificial reef. ICES J Mar Sci 59, S243-S249. (doi: 10.1006/jmsc.2002.1297)
  7. Conners ME, Conrath C and Brewer R. 2012. Field studies in support of stock assessment for the giant Pacific octopus Enteroctopus dofleini. North Pacific Research Board Final Report 906, 32.
  8. Delgado M, Ignasi GJ, Carbo R and Aguilera C. 2011. Growth of Octopus vulgaris (Cuvier, 1797) in tanks in the Ebro Delta (NE Spain): effects of temperature, salinity and culture density. Sci Mar 75, 53-59. (doi:10.3989/scimar.2011.75n1053)
  9. Domingues P, Garcia S and Garrido D. 2010. Effects of three culture densities on growth and survival of Octopus vulgaris (Cuvier, 1797). Aquacult Int 18, 165-174. (doi: 10.1007/s10499-008-9233-3)
  10. Estefanell J, Roo J, Fernandez-Palacios HR, Izquierdo M, Socorro J and Guirao R. 2012a. Comparison between individual and group rearing systems in Octopus vulgaris (Cuvier, 1797). J World Aquacult Soc 43, 63-72. (doi: 10.1111/j.1749-7345.2011.00540)
  11. Estefanell J, Roo J, Fernandez-Palacios HR, Izquierdo M and Socorro J. 2012b. Benthic cages versus floating cages in Octopus vulgaris Biological performance and biochemical composition feeding on Boops boops discarded from fish farms. Aquacult Eng 49, 46-52. (doi: 10.1016/j.aquaeng.2012.02.001)
  12. Estefanell J, Socorro J, Roo FJ, Fernandez-Palacios H and Izquierdo M. 2010. Gonad maturation in Octopus vulgaris during ongrowing, under different conditions of sex ratio. ICES J Mar Sci 67,1487-1493. (doi: 10.1093/icesjms/fsq111)
  13. FAO. 2012. Total fishery production.
  14. Garcia Garcia B, Cerezo VJ, Aguado-Gimenez F, Garcia GJ and Hernandez MD. 2009. Growth and mortality of common octopus Octopus vulgaris reared at different stocking densities in Mediterranean offshore cages. Aquac Res 40, 1202-1212. (doi: 10.1111/j.1365-2109.2009.02222)
  15. Guerra A. 1992. Mollusca, Cephalopoda. in M. A. Ramos, J. A. Tercedor, X. Belles, J. G. Gonsalbez, A. Guerra, E. Macpherson, F. Martin, Fauna Iberica, 1st edition. Museo Nacional de Ciencias Naturales, CSIC, Madrid 327.
  16. Hanlon RT and Messenger JB. 1996. Cephalapod Behaviour. Cambridge: Cambridge University Press.
  17. Hernandez-Garcia V, Hernadez-Lopez JL and Castro-Hernandez JJ. 2002. On the reproduction of Octopus vulgaris off the coast of the Canary Islands. Fish Res 57, 197-203. (doi: 10.1016/S0165-7836(01)00341-1)
  18. High WL. 1976. The giant Pacific octopus. US National Marine Fisheries Service, Mar Fish Rev 38, 17-22.
  19. Iglesias J, Sanchez FJ, Otero JJ and Moxica C. 2000. Culture of octopus (Octopus vulgaris, Cuvier). Present knowledge, problems and perspectives. Cahiers Options Mediterrane 47, 313-321. (doi: 10.1016/j.aquaculture.2007.02.019)
  20. Kang HY, Kim YH, Kim SY, Lee DW, Choi YM, Chang DS and Gwak WS. 2009. Maturity and spawning period of the common octopus, Octopus vulgaris in the south sea of Korea. Korean J of Malacol 25, 127-133.
  21. Katsanevakis S and Verriopoulos G. 2003. Den ecology of Octopus vulgaris, Cuvier 1797, on soft sediment: Availability and types of shelter. Sci Mar 68, 147-157. (doi:10.3989/scimar.2004.68n1147)
  22. Kim GB, Kang MR and Kim JW. 2008. Specific accumulation of heavy metals in squid collected from offshore Korean waters: preliminary results for offshore biomonitoring and food safety assessment. Fish Sci 74, 882-888. (doi: 10.1111/j.1444-2906.2008.01603)
  23. KOSIS. 2013. Total fishery production.
  24. Mangold K. 1983. Food, feeding and growth in cephalopods. Memoirs of the National Museum of Victoria 44, 81-93.
  25. Miliou H, Fintikaki M, Kountouris T and Verriopoulos G. 2005. Combined effects of temperature and body weight on growth utilization of the common octopus, Octopus vulgaris. Aquaculture 249, 245-256. (doi: 10.1016/j.aquaculture.2005.03.038)
  26. Oh MH and Kim TH. 2014. Subsurface cage system for octopus grow-out. Korea Patent 10-1355164. Jan. 17, 2014.
  27. Okamoto M, Anraku K, Kawamura G and Tanaka Y. 2001. Selectivity of color of shelter by Octopus vulgaris and O. aegina under different background colors. Nippon Suisan Gakkaishi 67, 672-677.
  28. Pascual S, Gonzalez AF and Guerra A. 2006. Unusual sites of Aggregata octopiana infection in octopus cultured in floating cages. Aquaculture 254, 21-23. (doi: 10.1016/j.aquaculture.2005.10.014)
  29. Rodriguez C, Carrasco JF, Arronte JC and Rodriguez M. 2006. Common octopus (Octopus vulgaris Cuvier, 1797) juvenile ongrowing in floating cages. Aquaculture 254, 293-300. (doi: 10.1016/j.aquaculture.2005.10.053)
  30. Ruxton GD. 2006. The unequal variance t-test is an underused alternative to student's t-test and the Mann-Whitney U-test. Behav Ecol 17, 688-690. (doi:10.1093/beheco/ark016)
  31. Saila SB, Wigbout M and Lermit RJ. 1980. Comparison of some time series models for the analysis of fisheries data. ICES J Mar Sci 39, 44-52. (doi: 10.1093/icesjms/39.1.44)
  32. Semmens JM, Pecl GT, Villanueva R, Jouffre D, Sobrino I, Wood JB and Rigby PR. 2004. Understanding octopus growth: patterns, variability and physiology. Mar Freshwater Res 55, 367-377. (
  33. Vaz-Pires P, Seixas P and Barbosa A. 2004. Aquaculture potential of the common octopus (Octopus vulgaris Cuvier, 1797): a review. Aquaculture 238, 221-238. (doi: 10.1016/j.aquaculture.2004.05.018)

Cited by

  1. Model test to understand shape change of BRD (Bycatch Reduction Device) for demersal trawl of Argentina vol.51, pp.3, 2015,
  2. Urbanization-related distribution patterns and habitat-use by the marine mesopredator, giant Pacific octopus (Enteroctopus dofleini) vol.21, pp.4, 2018,